1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
use std::cell::UnsafeCell;
use std::fmt::{self, Debug};
use std::marker::PhantomData;
use std::mem;
use std::ptr;
use std::sync::atomic::Ordering::{Relaxed, SeqCst, Acquire, Release, AcqRel};
use std::sync::atomic::{AtomicPtr, AtomicBool};
use std::sync::{Arc, Weak};
use std::usize;

use {task, Stream, Future, Poll, Async, IntoFuture};
use executor::{Notify, UnsafeNotify, NotifyHandle};
use task_impl::{self, AtomicTask};

/// An unbounded set of futures.
///
/// This "combinator" also serves a special function in this library, providing
/// the ability to maintain a set of futures that and manage driving them all
/// to completion.
///
/// Futures are pushed into this set and their realized values are yielded as
/// they are ready. This structure is optimized to manage a large number of
/// futures. Futures managed by `FuturesUnordered` will only be polled when they
/// generate notifications. This reduces the required amount of work needed to
/// coordinate large numbers of futures.
///
/// When a `FuturesUnordered` is first created, it does not contain any futures.
/// Calling `poll` in this state will result in `Ok(Async::Ready(None))` to be
/// returned. Futures are submitted to the set using `push`; however, the
/// future will **not** be polled at this point. `FuturesUnordered` will only
/// poll managged futures when `FuturesUnordered::poll` is called. As such, it
/// is important to call `poll` after pushing new futures.
///
/// If `FuturesUnordered::poll` returns `Ok(Async::Ready(None))` this means that
/// the set is currently not managing any futures. A future may be submitted
/// to the set at a later time. At that point, a call to
/// `FuturesUnordered::poll` will either return the future's resolved value
/// **or** `Ok(Async::NotReady)` if the future has not yet completed.
///
/// Note that you can create a ready-made `FuturesUnordered` via the
/// `futures_unordered` function in the `stream` module, or you can start with an
/// empty set with the `FuturesUnordered::new` constructor.
#[must_use = "streams do nothing unless polled"]
pub struct FuturesUnordered<F> {
    inner: Arc<Inner<F>>,
    len: usize,
    head_all: *const Node<F>,
}

unsafe impl<T: Send> Send for FuturesUnordered<T> {}
unsafe impl<T: Sync> Sync for FuturesUnordered<T> {}

/// Converts a list of futures into a `Stream` of results from the futures.
///
/// This function will take an list of futures (e.g. a vector, an iterator,
/// etc), and return a stream. The stream will yield items as they become
/// available on the futures internally, in the order that they become
/// available. This function is similar to `buffer_unordered` in that it may
/// return items in a different order than in the list specified.
///
/// Note that the returned set can also be used to dynamically push more
/// futures into the set as they become available.
pub fn futures_unordered<I>(futures: I) -> FuturesUnordered<<I::Item as IntoFuture>::Future>
    where I: IntoIterator,
          I::Item: IntoFuture
{
    let mut set = FuturesUnordered::new();

    for future in futures {
        set.push(future.into_future());
    }

    return set
}

// FuturesUnordered is implemented using two linked lists. One which links all
// futures managed by a `FuturesUnordered` and one that tracks futures that have
// been scheduled for polling. The first linked list is not thread safe and is
// only accessed by the thread that owns the `FuturesUnordered` value. The
// second linked list is an implementation of the intrusive MPSC queue algorithm
// described by 1024cores.net.
//
// When a future is submitted to the set a node is allocated and inserted in
// both linked lists. The next call to `poll` will (eventually) see this node
// and call `poll` on the future.
//
// Before a managed future is polled, the current task's `Notify` is replaced
// with one that is aware of the specific future being run. This ensures that
// task notifications generated by that specific future are visible to
// `FuturesUnordered`. When a notification is received, the node is scheduled
// for polling by being inserted into the concurrent linked list.
//
// Each node uses an `AtomicUisze` to track it's state. The node state is the
// reference count (the number of outstanding handles to the node) as well as a
// flag tracking if the node is currently inserted in the atomic queue. When the
// future is notified, it will only insert itself into the linked list if it
// isn't currently inserted.

#[allow(missing_debug_implementations)]
struct Inner<T> {
    // The task using `FuturesUnordered`.
    parent: AtomicTask,

    // Head/tail of the readiness queue
    head_readiness: AtomicPtr<Node<T>>,
    tail_readiness: UnsafeCell<*const Node<T>>,
    stub: Arc<Node<T>>,
}

struct Node<T> {
    // The future
    future: UnsafeCell<Option<T>>,

    // Next pointer for linked list tracking all active nodes
    next_all: UnsafeCell<*const Node<T>>,

    // Previous node in linked list tracking all active nodes
    prev_all: UnsafeCell<*const Node<T>>,

    // Next pointer in readiness queue
    next_readiness: AtomicPtr<Node<T>>,

    // Queue that we'll be enqueued to when notified
    queue: Weak<Inner<T>>,

    // Whether or not this node is currently in the mpsc queue.
    queued: AtomicBool,
}

enum Dequeue<T> {
    Data(*const Node<T>),
    Empty,
    Inconsistent,
}

impl<T> FuturesUnordered<T>
    where T: Future,
{
    /// Constructs a new, empty `FuturesUnordered`
    ///
    /// The returned `FuturesUnordered` does not contain any futures and, in this
    /// state, `FuturesUnordered::poll` will return `Ok(Async::Ready(None))`.
    pub fn new() -> FuturesUnordered<T> {
        let stub = Arc::new(Node {
            future: UnsafeCell::new(None),
            next_all: UnsafeCell::new(ptr::null()),
            prev_all: UnsafeCell::new(ptr::null()),
            next_readiness: AtomicPtr::new(ptr::null_mut()),
            queued: AtomicBool::new(true),
            queue: Weak::new(),
        });
        let stub_ptr = &*stub as *const Node<T>;
        let inner = Arc::new(Inner {
            parent: AtomicTask::new(),
            head_readiness: AtomicPtr::new(stub_ptr as *mut _),
            tail_readiness: UnsafeCell::new(stub_ptr),
            stub: stub,
        });

        FuturesUnordered {
            len: 0,
            head_all: ptr::null_mut(),
            inner: inner,
        }
    }
}

impl<T> FuturesUnordered<T> {
    /// Returns the number of futures contained in the set.
    ///
    /// This represents the total number of in-flight futures.
    pub fn len(&self) -> usize {
        self.len
    }

    /// Returns `true` if the set contains no futures
    pub fn is_empty(&self) -> bool {
        self.len == 0
    }

    /// Push a future into the set.
    ///
    /// This function submits the given future to the set for managing. This
    /// function will not call `poll` on the submitted future. The caller must
    /// ensure that `FuturesUnordered::poll` is called in order to receive task
    /// notifications.
    pub fn push(&mut self, future: T) {
        let node = Arc::new(Node {
            future: UnsafeCell::new(Some(future)),
            next_all: UnsafeCell::new(ptr::null_mut()),
            prev_all: UnsafeCell::new(ptr::null_mut()),
            next_readiness: AtomicPtr::new(ptr::null_mut()),
            queued: AtomicBool::new(true),
            queue: Arc::downgrade(&self.inner),
        });

        // Right now our node has a strong reference count of 1. We transfer
        // ownership of this reference count to our internal linked list
        // and we'll reclaim ownership through the `unlink` function below.
        let ptr = self.link(node);

        // We'll need to get the future "into the system" to start tracking it,
        // e.g. getting its unpark notifications going to us tracking which
        // futures are ready. To do that we unconditionally enqueue it for
        // polling here.
        self.inner.enqueue(ptr);
    }

    fn release_node(&mut self, node: Arc<Node<T>>) {
        // The future is done, try to reset the queued flag. This will prevent
        // `notify` from doing any work in the future
        let prev = node.queued.swap(true, SeqCst);

        // Drop the future, even if it hasn't finished yet. This is safe
        // because we're dropping the future on the thread that owns
        // `FuturesUnordered`, which correctly tracks T's lifetimes and such.
        unsafe {
            drop((*node.future.get()).take());
        }

        // If the queued flag was previously set then it means that this node
        // is still in our internal mpsc queue. We then transfer ownership
        // of our reference count to the mpsc queue, and it'll come along and
        // free it later, noticing that the future is `None`.
        //
        // If, however, the queued flag was *not* set then we're safe to
        // release our reference count on the internal node. The queued flag
        // was set above so all future `enqueue` operations will not actually
        // enqueue the node, so our node will never see the mpsc queue again.
        // The node itself will be deallocated once all reference counts have
        // been dropped by the various owning tasks elsewhere.
        if prev {
            mem::forget(node);
        }
    }

    /// Insert a new node into the internal linked list.
    fn link(&mut self, node: Arc<Node<T>>) -> *const Node<T> {
        let ptr = arc2ptr(node);
        unsafe {
            *(*ptr).next_all.get() = self.head_all;
            if !self.head_all.is_null() {
                *(*self.head_all).prev_all.get() = ptr;
            }
        }

        self.head_all = ptr;
        self.len += 1;
        return ptr
    }

    /// Remove the node from the linked list tracking all nodes currently
    /// managed by `FuturesUnordered`.
    unsafe fn unlink(&mut self, node: *const Node<T>) -> Arc<Node<T>> {
        let node = ptr2arc(node);
        let next = *node.next_all.get();
        let prev = *node.prev_all.get();
        *node.next_all.get() = ptr::null_mut();
        *node.prev_all.get() = ptr::null_mut();

        if !next.is_null() {
            *(*next).prev_all.get() = prev;
        }

        if !prev.is_null() {
            *(*prev).next_all.get() = next;
        } else {
            self.head_all = next;
        }
        self.len -= 1;
        return node
    }
}

impl<T> Stream for FuturesUnordered<T>
    where T: Future
{
    type Item = T::Item;
    type Error = T::Error;

    fn poll(&mut self) -> Poll<Option<T::Item>, T::Error> {
        // Ensure `parent` is correctly set.
        self.inner.parent.register();

        loop {
            let node = match unsafe { self.inner.dequeue() } {
                Dequeue::Empty => {
                    if self.is_empty() {
                        return Ok(Async::Ready(None));
                    } else {
                        return Ok(Async::NotReady)
                    }
                }
                Dequeue::Inconsistent => {
                    // At this point, it may be worth yielding the thread &
                    // spinning a few times... but for now, just yield using the
                    // task system.
                    task::current().notify();
                    return Ok(Async::NotReady);
                }
                Dequeue::Data(node) => node,
            };

            debug_assert!(node != self.inner.stub());

            unsafe {
                let mut future = match (*(*node).future.get()).take() {
                    Some(future) => future,

                    // If the future has already gone away then we're just
                    // cleaning out this node. See the comment in
                    // `release_node` for more information, but we're basically
                    // just taking ownership of our reference count here.
                    None => {
                        let node = ptr2arc(node);
                        assert!((*node.next_all.get()).is_null());
                        assert!((*node.prev_all.get()).is_null());
                        continue
                    }
                };

                // Unset queued flag... this must be done before
                // polling. This ensures that the future gets
                // rescheduled if it is notified **during** a call
                // to `poll`.
                let prev = (*node).queued.swap(false, SeqCst);
                assert!(prev);

                // We're going to need to be very careful if the `poll`
                // function below panics. We need to (a) not leak memory and
                // (b) ensure that we still don't have any use-after-frees. To
                // manage this we do a few things:
                //
                // * This "bomb" here will call `release_node` if dropped
                //   abnormally. That way we'll be sure the memory management
                //   of the `node` is managed correctly.
                // * The future was extracted above (taken ownership). That way
                //   if it panics we're guaranteed that the future is
                //   dropped on this thread and doesn't accidentally get
                //   dropped on a different thread (bad).
                // * We unlink the node from our internal queue to preemptively
                //   assume it'll panic, in which case we'll want to discard it
                //   regardless.
                struct Bomb<'a, T: 'a> {
                    queue: &'a mut FuturesUnordered<T>,
                    node: Option<Arc<Node<T>>>,
                }
                impl<'a, T> Drop for Bomb<'a, T> {
                    fn drop(&mut self) {
                        if let Some(node) = self.node.take() {
                            self.queue.release_node(node);
                        }
                    }
                }
                let mut bomb = Bomb {
                    node: Some(self.unlink(node)),
                    queue: self,
                };

                // Poll the underlying future with the appropriate `notify`
                // implementation. This is where a large bit of the unsafety
                // starts to stem from internally. The `notify` instance itself
                // is basically just our `Arc<Node<T>>` and tracks the mpsc
                // queue of ready futures.
                //
                // Critically though `Node<T>` won't actually access `T`, the
                // future, while it's floating around inside of `Task`
                // instances. These structs will basically just use `T` to size
                // the internal allocation, appropriately accessing fields and
                // deallocating the node if need be.
                let res = {
                    let notify = NodeToHandle(bomb.node.as_ref().unwrap());
                    task_impl::with_notify(&notify, 0, || {
                        future.poll()
                    })
                };

                let ret = match res {
                    Ok(Async::NotReady) => {
                        let node = bomb.node.take().unwrap();
                        *node.future.get() = Some(future);
                        bomb.queue.link(node);
                        continue
                    }
                    Ok(Async::Ready(e)) => Ok(Async::Ready(Some(e))),
                    Err(e) => Err(e),
                };
                return ret
            }
        }
    }
}

impl<T: Debug> Debug for FuturesUnordered<T> {
    fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
        write!(fmt, "FuturesUnordered {{ ... }}")
    }
}

impl<T> Drop for FuturesUnordered<T> {
    fn drop(&mut self) {
        // When a `FuturesUnordered` is dropped we want to drop all futures associated
        // with it. At the same time though there may be tons of `Task` handles
        // flying around which contain `Node<T>` references inside them. We'll
        // let those naturally get deallocated when the `Task` itself goes out
        // of scope or gets notified.
        unsafe {
            while !self.head_all.is_null() {
                let head = self.head_all;
                let node = self.unlink(head);
                self.release_node(node);
            }
        }

        // Note that at this point we could still have a bunch of nodes in the
        // mpsc queue. None of those nodes, however, have futures associated
        // with them so they're safe to destroy on any thread. At this point
        // the `FuturesUnordered` struct, the owner of the one strong reference
        // to `Inner<T>` will drop the strong reference. At that point
        // whichever thread releases the strong refcount last (be it this
        // thread or some other thread as part of an `upgrade`) will clear out
        // the mpsc queue and free all remaining nodes.
        //
        // While that freeing operation isn't guaranteed to happen here, it's
        // guaranteed to happen "promptly" as no more "blocking work" will
        // happen while there's a strong refcount held.
    }
}

impl<T> Inner<T> {
    /// The enqueue function from the 1024cores intrusive MPSC queue algorithm.
    fn enqueue(&self, node: *const Node<T>) {
        unsafe {
            debug_assert!((*node).queued.load(Relaxed));

            // This action does not require any coordination
            (*node).next_readiness.store(ptr::null_mut(), Relaxed);

            // Note that these atomic orderings come from 1024cores
            let node = node as *mut _;
            let prev = self.head_readiness.swap(node, AcqRel);
            (*prev).next_readiness.store(node, Release);
        }
    }

    /// The dequeue function from the 1024cores intrusive MPSC queue algorithm
    ///
    /// Note that this unsafe as it required mutual exclusion (only one thread
    /// can call this) to be guaranteed elsewhere.
    unsafe fn dequeue(&self) -> Dequeue<T> {
        let mut tail = *self.tail_readiness.get();
        let mut next = (*tail).next_readiness.load(Acquire);

        if tail == self.stub() {
            if next.is_null() {
                return Dequeue::Empty;
            }

            *self.tail_readiness.get() = next;
            tail = next;
            next = (*next).next_readiness.load(Acquire);
        }

        if !next.is_null() {
            *self.tail_readiness.get() = next;
            debug_assert!(tail != self.stub());
            return Dequeue::Data(tail);
        }

        if self.head_readiness.load(Acquire) as *const _ != tail {
            return Dequeue::Inconsistent;
        }

        self.enqueue(self.stub());

        next = (*tail).next_readiness.load(Acquire);

        if !next.is_null() {
            *self.tail_readiness.get() = next;
            return Dequeue::Data(tail);
        }

        Dequeue::Inconsistent
    }

    fn stub(&self) -> *const Node<T> {
        &*self.stub
    }
}

impl<T> Drop for Inner<T> {
    fn drop(&mut self) {
        // Once we're in the destructor for `Inner<T>` we need to clear out the
        // mpsc queue of nodes if there's anything left in there.
        //
        // Note that each node has a strong reference count associated with it
        // which is owned by the mpsc queue. All nodes should have had their
        // futures dropped already by the `FuturesUnordered` destructor above,
        // so we're just pulling out nodes and dropping their refcounts.
        unsafe {
            loop {
                match self.dequeue() {
                    Dequeue::Empty => break,
                    Dequeue::Inconsistent => abort("inconsistent in drop"),
                    Dequeue::Data(ptr) => drop(ptr2arc(ptr)),
                }
            }
        }
    }
}

#[allow(missing_debug_implementations)]
struct NodeToHandle<'a, T: 'a>(&'a Arc<Node<T>>);

impl<'a, T> Clone for NodeToHandle<'a, T> {
    fn clone(&self) -> Self {
        NodeToHandle(self.0)
    }
}

impl<'a, T> From<NodeToHandle<'a, T>> for NotifyHandle {
    fn from(handle: NodeToHandle<'a, T>) -> NotifyHandle {
        unsafe {
            let ptr = handle.0.clone();
            let ptr = mem::transmute::<Arc<Node<T>>, *mut ArcNode<T>>(ptr);
            NotifyHandle::new(hide_lt(ptr))
        }
    }
}

struct ArcNode<T>(PhantomData<T>);

// We should never touch `T` on any thread other than the one owning
// `FuturesUnordered`, so this should be a safe operation.
unsafe impl<T> Send for ArcNode<T> {}
unsafe impl<T> Sync for ArcNode<T> {}

impl<T> Notify for ArcNode<T> {
    fn notify(&self, _id: usize) {
        unsafe {
            let me: *const ArcNode<T> = self;
            let me: *const *const ArcNode<T> = &me;
            let me = me as *const Arc<Node<T>>;
            Node::notify(&*me)
        }
    }
}

unsafe impl<T> UnsafeNotify for ArcNode<T> {
    unsafe fn clone_raw(&self) -> NotifyHandle {
        let me: *const ArcNode<T> = self;
        let me: *const *const ArcNode<T> = &me;
        let me = &*(me as *const Arc<Node<T>>);
        NodeToHandle(me).into()
    }

    unsafe fn drop_raw(&self) {
        let mut me: *const ArcNode<T> = self;
        let me = &mut me as *mut *const ArcNode<T> as *mut Arc<Node<T>>;
        ptr::drop_in_place(me);
    }
}

unsafe fn hide_lt<T>(p: *mut ArcNode<T>) -> *mut UnsafeNotify {
    mem::transmute(p as *mut UnsafeNotify)
}

impl<T> Node<T> {
    fn notify(me: &Arc<Node<T>>) {
        let inner = match me.queue.upgrade() {
            Some(inner) => inner,
            None => return,
        };

        // It's our job to notify the node that it's ready to get polled,
        // meaning that we need to enqueue it into the readiness queue. To
        // do this we flag that we're ready to be queued, and if successful
        // we then do the literal queueing operation, ensuring that we're
        // only queued once.
        //
        // Once the node is inserted we be sure to notify the parent task,
        // as it'll want to come along and pick up our node now.
        //
        // Note that we don't change the reference count of the node here,
        // we're just enqueueing the raw pointer. The `FuturesUnordered`
        // implementation guarantees that if we set the `queued` flag true that
        // there's a reference count held by the main `FuturesUnordered` queue
        // still.
        let prev = me.queued.swap(true, SeqCst);
        if !prev {
            inner.enqueue(&**me);
            inner.parent.notify();
        }
    }
}

impl<T> Drop for Node<T> {
    fn drop(&mut self) {
        // Currently a `Node<T>` is sent across all threads for any lifetime,
        // regardless of `T`. This means that for memory safety we can't
        // actually touch `T` at any time except when we have a reference to the
        // `FuturesUnordered` itself.
        //
        // Consequently it *should* be the case that we always drop futures from
        // the `FuturesUnordered` instance, but this is a bomb in place to catch
        // any bugs in that logic.
        unsafe {
            if (*self.future.get()).is_some() {
                abort("future still here when dropping");
            }
        }
    }
}

fn arc2ptr<T>(ptr: Arc<T>) -> *const T {
    let addr = &*ptr as *const T;
    mem::forget(ptr);
    return addr
}

unsafe fn ptr2arc<T>(ptr: *const T) -> Arc<T> {
    let anchor = mem::transmute::<usize, Arc<T>>(0x10);
    let addr = &*anchor as *const T;
    mem::forget(anchor);
    let offset = addr as isize - 0x10;
    mem::transmute::<isize, Arc<T>>(ptr as isize - offset)
}

fn abort(s: &str) -> ! {
    struct DoublePanic;

    impl Drop for DoublePanic {
        fn drop(&mut self) {
            panic!("panicking twice to abort the program");
        }
    }

    let _bomb = DoublePanic;
    panic!("{}", s);
}