1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526
use {sys, Token}; use event_imp::{self as event, Ready, Event, Evented, PollOpt}; use std::{fmt, io, ptr, usize}; use std::cell::UnsafeCell; use std::{mem, ops, isize}; #[cfg(all(unix, not(target_os = "fuchsia")))] use std::os::unix::io::AsRawFd; #[cfg(all(unix, not(target_os = "fuchsia")))] use std::os::unix::io::RawFd; use std::sync::{Arc, Mutex, Condvar}; use std::sync::atomic::{AtomicUsize, AtomicPtr, AtomicBool}; use std::sync::atomic::Ordering::{self, Acquire, Release, AcqRel, Relaxed, SeqCst}; use std::time::{Duration, Instant}; #[cfg(all(unix, not(target_os = "fuchsia")))] use sys::unix::UnixReady; // Poll is backed by two readiness queues. The first is a system readiness queue // represented by `sys::Selector`. The system readiness queue handles events // provided by the system, such as TCP and UDP. The second readiness queue is // implemented in user space by `ReadinessQueue`. It provides a way to implement // purely user space `Evented` types. // // `ReadinessQueue` is is backed by a MPSC queue that supports reuse of linked // list nodes. This significantly reduces the number of required allocations. // Each `Registration` / `SetReadiness` pair allocates a single readiness node // that is used for the lifetime of the registration. // // The readiness node also includes a single atomic variable, `state` that // tracks most of the state associated with the registration. This includes the // current readiness, interest, poll options, and internal state. When the node // state is mutated, it is queued in the MPSC channel. A call to // `ReadinessQueue::poll` will dequeue and process nodes. The node state can // still be mutated while it is queued in the channel for processing. // Intermediate state values do not matter as long as the final state is // included in the call to `poll`. This is the eventually consistent nature of // the readiness queue. // // The readiness node is ref counted using the `ref_count` field. On creation, // the ref_count is initialized to 3: one `Registration` handle, one // `SetReadiness` handle, and one for the readiness queue. Since the readiness queue // doesn't *always* hold a handle to the node, we don't use the Arc type for // managing ref counts (this is to avoid constantly incrementing and // decrementing the ref count when pushing & popping from the queue). When the // `Registration` handle is dropped, the `dropped` flag is set on the node, then // the node is pushed into the registration queue. When Poll::poll pops the // node, it sees the drop flag is set, and decrements it's ref count. // // The MPSC queue is a modified version of the intrusive MPSC node based queue // described by 1024cores [1]. // // The first modification is that two markers are used instead of a single // `stub`. The second marker is a `sleep_marker` which is used to signal to // producers that the consumer is going to sleep. This sleep_marker is only used // when the queue is empty, implying that the only node in the queue is // `end_marker`. // // The second modification is an `until` argument passed to the dequeue // function. When `poll` encounters a level-triggered node, the node will be // immediately pushed back into the queue. In order to avoid an infinite loop, // `poll` before pushing the node, the pointer is saved off and then passed // again as the `until` argument. If the next node to pop is `until`, then // `Dequeue::Empty` is returned. // // [1] http://www.1024cores.net/home/lock-free-algorithms/queues/intrusive-mpsc-node-based-queue /// Polls for readiness events on all registered values. /// /// `Poll` allows a program to monitor a large number of `Evented` types, /// waiting until one or more become "ready" for some class of operations; e.g. /// reading and writing. An `Evented` type is considered ready if it is possible /// to immediately perform a corresponding operation; e.g. [`read`] or /// [`write`]. /// /// To use `Poll`, an `Evented` type must first be registered with the `Poll` /// instance using the [`register`] method, supplying readiness interest. The /// readiness interest tells `Poll` which specific operations on the handle to /// monitor for readiness. A `Token` is also passed to the [`register`] /// function. When `Poll` returns a readiness event, it will include this token. /// This associates the event with the `Evented` handle that generated the /// event. /// /// [`read`]: tcp/struct.TcpStream.html#method.read /// [`write`]: tcp/struct.TcpStream.html#method.write /// [`register`]: #method.register /// /// # Examples /// /// A basic example -- establishing a `TcpStream` connection. /// /// ``` /// use mio::{Events, Poll, Ready, PollOpt, Token}; /// use mio::tcp::TcpStream; /// /// use std::net::{TcpListener, SocketAddr}; /// /// // Bind a server socket to connect to. /// let addr: SocketAddr = "127.0.0.1:0".parse().unwrap(); /// let server = TcpListener::bind(&addr).unwrap(); /// /// // Construct a new `Poll` handle as well as the `Events` we'll store into /// let poll = Poll::new().unwrap(); /// let mut events = Events::with_capacity(1024); /// /// // Connect the stream /// let stream = TcpStream::connect(&server.local_addr().unwrap()).unwrap(); /// /// // Register the stream with `Poll` /// poll.register(&stream, Token(0), Ready::all(), PollOpt::edge()).unwrap(); /// /// // Wait for the socket to become ready. This has to happens in a loop to /// // handle spurious wakeups. /// loop { /// poll.poll(&mut events, None).unwrap(); /// /// for event in &events { /// if event.token() == Token(0) && event.readiness().is_writable() { /// // The socket connected (probably, it could still be a spurious /// // wakeup) /// return; /// } /// } /// } /// ``` /// /// # Edge-triggered and level-triggered /// /// An [`Evented`] registration may request edge-triggered events or /// level-triggered events. This is done by setting `register`'s /// [`PollOpt`] argument to either [`edge`] or [`level`]. /// /// The difference between the two can be described as follows. Supposed that /// this scenario happens: /// /// 1. A [`TcpStream`] is registered with `Poll`. /// 2. The socket receives 2kb of data. /// 3. A call to [`Poll::poll`] returns the token associated with the socket /// indicating readable readiness. /// 4. 1kb is read from the socket. /// 5. Another call to [`Poll::poll`] is made. /// /// If when the socket was registered with `Poll`, edge triggered events were /// requested, then the call to [`Poll::poll`] done in step **5** will /// (probably) hang despite there being another 1kb still present in the socket /// read buffer. The reason for this is that edge-triggered mode delivers events /// only when changes occur on the monitored [`Evented`]. So, in step *5* the /// caller might end up waiting for some data that is already present inside the /// socket buffer. /// /// With edge-triggered events, operations **must** be performed on the /// `Evented` type until [`WouldBlock`] is returned. In other words, after /// receiving an event indicating readiness for a certain operation, one should /// assume that [`Poll::poll`] may never return another event for the same token /// and readiness until the operation returns [`WouldBlock`]. /// /// By contrast, when level-triggered notfications was requested, each call to /// [`Poll::poll`] will return an event for the socket as long as data remains /// in the socket buffer. Generally, level-triggered events should be avoided if /// high performance is a concern. /// /// Since even with edge-triggered events, multiple events can be generated upon /// receipt of multiple chunks of data, the caller has the option to set the /// [`oneshot`] flag. This tells `Poll` to disable the associated [`Evented`] /// after the event is returned from [`Poll::poll`]. The subsequent calls to /// [`Poll::poll`] will no longer include events for [`Evented`] handles that /// are disabled even if the readiness state changes. The handle can be /// re-enabled by calling [`reregister`]. When handles are disabled, internal /// resources used to monitor the handle are maintained until the handle is /// dropped or deregistered. This makes re-registering the handle a fast /// operation. /// /// For example, in the following scenario: /// /// 1. A [`TcpStream`] is registered with `Poll`. /// 2. The socket receives 2kb of data. /// 3. A call to [`Poll::poll`] returns the token associated with the socket /// indicating readable readiness. /// 4. 2kb is read from the socket. /// 5. Another call to read is issued and [`WouldBlock`] is returned /// 6. The socket receives another 2kb of data. /// 7. Another call to [`Poll::poll`] is made. /// /// Assuming the socket was registered with `Poll` with the [`edge`] and /// [`oneshot`] options, then the call to [`Poll::poll`] in step 7 would block. This /// is because, [`oneshot`] tells `Poll` to disable events for the socket after /// returning an event. /// /// In order to receive the event for the data received in step 6, the socket /// would need to be reregistered using [`reregister`]. /// /// [`PollOpt`]: struct.PollOpt.html /// [`edge`]: struct.PollOpt.html#method.edge /// [`level`]: struct.PollOpt.html#method.level /// [`Poll::poll`]: struct.Poll.html#method.poll /// [`WouldBlock`]: https://doc.rust-lang.org/std/io/enum.ErrorKind.html#variant.WouldBlock /// [`Evented`]: event/trait.Evented.html /// [`TcpStream`]: tcp/struct.TcpStream.html /// [`reregister`]: #method.reregister /// [`oneshot`]: struct.PollOpt.html#method.oneshot /// /// # Portability /// /// Using `Poll` provides a portable interface across supported platforms as /// long as the caller takes the following into consideration: /// /// ### Spurious events /// /// [`Poll::poll`] may return readiness events even if the associated /// [`Evented`] handle is not actually ready. Given the same code, this may /// happen more on some platforms than others. It is important to never assume /// that, just because a readiness notification was received, that the /// associated operation will as well. /// /// If operation fails with [`WouldBlock`], then the caller should not treat /// this as an error and wait until another readiness event is received. /// /// ### Draining readiness /// /// When using edge-triggered mode, once a readiness event is received, the /// corresponding operation must be performed repeatedly until it returns /// [`WouldBlock`]. Unless this is done, there is no guarantee that another /// readiness event will be delivered, even if further data is received for the /// [`Evented`] handle. /// /// For example, in the first scenario described above, after step 5, even if /// the socket receives more data there is no guarantee that another readiness /// event will be delivered. /// /// ### Readiness operations /// /// The only readiness operations that are guaranteed to be present on all /// supported platforms are [`readable`] and [`writable`]. All other readiness /// operations may have false negatives and as such should be considered /// **hints**. This means that if a socket is registered with [`readable`], /// [`error`], and [`hup`] interest, and either an error or hup is received, a /// readiness event will be generated for the socket, but it **may** only /// include `readable` readiness. Also note that, given the potential for /// spurious events, receiving a readiness event with `hup` or `error` doesn't /// actually mean that a `read` on the socket will return a result matching the /// readiness event. /// /// In other words, portable programs that explicitly check for [`hup`] or /// [`error`] readiness should be doing so as an **optimization** and always be /// able to handle an error or HUP situation when performing the actual read /// operation. /// /// [`readable`]: struct.Ready.html#method.readable /// [`writable`]: struct.Ready.html#method.writable /// [`error`]: struct.Ready.html#method.error /// [`hup`]: struct.Ready.html#method.hup /// /// ### Registering handles /// /// Unless otherwise noted, it should be assumed that types implementing /// [`Evented`] will never be become ready unless they are registered with `Poll`. /// /// For example: /// /// ``` /// use mio::{Poll, Ready, PollOpt, Token}; /// use mio::tcp::TcpStream; /// use std::time::Duration; /// use std::thread; /// /// let sock = TcpStream::connect(&"216.58.193.100:80".parse().unwrap()).unwrap(); /// /// thread::sleep(Duration::from_secs(1)); /// /// let poll = Poll::new().unwrap(); /// /// // The connect is not guaranteed to have started until it is registered at /// // this point /// poll.register(&sock, Token(0), Ready::all(), PollOpt::edge()).unwrap(); /// ``` /// /// # Implementation notes /// /// `Poll` is backed by the selector provided by the operating system. /// /// | OS | Selector | /// |------------|-----------| /// | Linux | [epoll] | /// | OS X, iOS | [kqueue] | /// | Windows | [IOCP] | /// | FreeBSD | [kqueue] | /// | Android | [epoll] | /// /// On all supported platforms, socket operations are handled by using the /// system selector. Platform specific extensions (e.g. [`EventedFd`]) allow /// accessing other features provided by individual system selectors. For /// example, Linux's [`signalfd`] feature can be used by registering the FD with /// `Poll` via [`EventedFd`]. /// /// On all platforms except windows, a call to [`Poll::poll`] is mostly just a /// direct call to the system selector. However, [IOCP] uses a completion model /// instead of a readiness model. In this case, `Poll` must adapt the completion /// model Mio's API. While non-trivial, the bridge layer is still quite /// efficient. The most expensive part being calls to `read` and `write` require /// data to be copied into an intermediate buffer before it is passed to the /// kernel. /// /// Notifications generated by [`SetReadiness`] are handled by an internal /// readiness queue. A single call to [`Poll::poll`] will collect events from /// both from the system selector and the internal readiness queue. /// /// [epoll]: http://man7.org/linux/man-pages/man7/epoll.7.html /// [kqueue]: https://www.freebsd.org/cgi/man.cgi?query=kqueue&sektion=2 /// [IOCP]: https://msdn.microsoft.com/en-us/library/windows/desktop/aa365198(v=vs.85).aspx /// [`signalfd`]: http://man7.org/linux/man-pages/man2/signalfd.2.html /// [`EventedFd`]: unix/struct.EventedFd.html /// [`SetReadiness`]: struct.SetReadiness.html /// [`Poll::poll`]: struct.Poll.html#method.poll pub struct Poll { // Platform specific IO selector selector: sys::Selector, // Custom readiness queue readiness_queue: ReadinessQueue, // Use an atomic to first check if a full lock will be required. This is a // fast-path check for single threaded cases avoiding the extra syscall lock_state: AtomicUsize, // Sequences concurrent calls to `Poll::poll` lock: Mutex<()>, // Wakeup the next waiter condvar: Condvar, } /// Handle to a user space `Poll` registration. /// /// `Registration` allows implementing [`Evented`] for types that cannot work /// with the [system selector]. A `Registration` is always paired with a /// `SetReadiness`, which allows updating the registration's readiness state. /// When [`set_readiness`] is called and the `Registration` is associated with a /// [`Poll`] instance, a readiness event will be created and eventually returned /// by [`poll`]. /// /// A `Registration` / `SetReadiness` pair is created by calling /// [`Registration::new2`]. At this point, the registration is not being /// monitored by a [`Poll`] instance, so calls to `set_readiness` will not /// result in any readiness notifications. /// /// `Registration` implements [`Evented`], so it can be used with [`Poll`] using /// the same [`register`], [`reregister`], and [`deregister`] functions used /// with TCP, UDP, etc... types. Once registered with [`Poll`], readiness state /// changes result in readiness events being dispatched to the [`Poll`] instance /// with which `Registration` is registered. /// /// **Note**, before using `Registration` be sure to read the /// [`set_readiness`] documentation and the [portability] notes. The /// guarantees offered by `Registration` may be weaker than expected. /// /// For high level documentation, see [`Poll`]. /// /// # Examples /// /// ``` /// use mio::{Ready, Registration, Poll, PollOpt, Token}; /// use mio::event::Evented; /// /// use std::io; /// use std::time::Instant; /// use std::thread; /// /// pub struct Deadline { /// when: Instant, /// registration: Registration, /// } /// /// impl Deadline { /// pub fn new(when: Instant) -> Deadline { /// let (registration, set_readiness) = Registration::new2(); /// /// thread::spawn(move || { /// let now = Instant::now(); /// /// if now < when { /// thread::sleep(when - now); /// } /// /// set_readiness.set_readiness(Ready::readable()); /// }); /// /// Deadline { /// when: when, /// registration: registration, /// } /// } /// /// pub fn is_elapsed(&self) -> bool { /// Instant::now() >= self.when /// } /// } /// /// impl Evented for Deadline { /// fn register(&self, poll: &Poll, token: Token, interest: Ready, opts: PollOpt) /// -> io::Result<()> /// { /// self.registration.register(poll, token, interest, opts) /// } /// /// fn reregister(&self, poll: &Poll, token: Token, interest: Ready, opts: PollOpt) /// -> io::Result<()> /// { /// self.registration.reregister(poll, token, interest, opts) /// } /// /// fn deregister(&self, poll: &Poll) -> io::Result<()> { /// self.registration.deregister(poll) /// } /// } /// ``` /// /// [system selector]: struct.Poll.html#implementation-notes /// [`Poll`]: struct.Poll.html /// [`Registration::new2`]: struct.Registration.html#method.new2 /// [`Evented`]: event/trait.Evented.html pub struct Registration { inner: RegistrationInner, } unsafe impl Send for Registration {} unsafe impl Sync for Registration {} /// Updates the readiness state of the associated [`Registration`]. /// /// See [`Registration`] for more documentation on using `SetReadiness` and /// [`Poll`] for high level polling documentation. /// /// [`Registration`] #[derive(Clone)] pub struct SetReadiness { inner: RegistrationInner, } unsafe impl Send for SetReadiness {} unsafe impl Sync for SetReadiness {} /// Used to associate an IO type with a Selector #[derive(Debug)] pub struct SelectorId { id: AtomicUsize, } struct RegistrationInner { // Unsafe pointer to the registration's node. The node is ref counted. This // cannot "simply" be tracked by an Arc because `Poll::poll` has an implicit // handle though it isn't stored anywhere. In other words, `Poll::poll` // needs to decrement the ref count before the node is freed. node: *mut ReadinessNode, } #[derive(Clone)] struct ReadinessQueue { inner: Arc<ReadinessQueueInner>, } unsafe impl Send for ReadinessQueue {} unsafe impl Sync for ReadinessQueue {} struct ReadinessQueueInner { // Used to wake up `Poll` when readiness is set in another thread. awakener: sys::Awakener, // Head of the MPSC queue used to signal readiness to `Poll::poll`. head_readiness: AtomicPtr<ReadinessNode>, // Tail of the readiness queue. // // Only accessed by Poll::poll. Coordination will be handled by the poll fn tail_readiness: UnsafeCell<*mut ReadinessNode>, // Fake readiness node used to punctuate the end of the readiness queue. // Before attempting to read from the queue, this node is inserted in order // to partition the queue between nodes that are "owned" by the dequeue end // and nodes that will be pushed on by producers. end_marker: Box<ReadinessNode>, // Similar to `end_marker`, but this node signals to producers that `Poll` // has gone to sleep and must be woken up. sleep_marker: Box<ReadinessNode>, // Similar to `end_marker`, but the node signals that the queue is closed. // This happens when `ReadyQueue` is dropped and signals to producers that // the nodes should no longer be pushed into the queue. closed_marker: Box<ReadinessNode>, } /// Node shared by a `Registration` / `SetReadiness` pair as well as the node /// queued into the MPSC channel. struct ReadinessNode { // Node state, see struct docs for `ReadinessState` // // This variable is the primary point of coordination between all the // various threads concurrently accessing the node. state: AtomicState, // The registration token cannot fit into the `state` variable, so it is // broken out here. In order to atomically update both the state and token // we have to jump through a few hoops. // // First, `state` includes `token_read_pos` and `token_write_pos`. These can // either be 0, 1, or 2 which represent a token slot. `token_write_pos` is // the token slot that contains the most up to date registration token. // `token_read_pos` is the token slot that `poll` is currently reading from. // // When a call to `update` includes a different token than the one currently // associated with the registration (token_write_pos), first an unused token // slot is found. The unused slot is the one not represented by // `token_read_pos` OR `token_write_pos`. The new token is written to this // slot, then `state` is updated with the new `token_write_pos` value. This // requires that there is only a *single* concurrent call to `update`. // // When `poll` reads a node state, it checks that `token_read_pos` matches // `token_write_pos`. If they do not match, then it atomically updates // `state` such that `token_read_pos` is set to `token_write_pos`. It will // then read the token at the newly updated `token_read_pos`. token_0: UnsafeCell<Token>, token_1: UnsafeCell<Token>, token_2: UnsafeCell<Token>, // Used when the node is queued in the readiness linked list. Accessing // this field requires winning the "queue" lock next_readiness: AtomicPtr<ReadinessNode>, // Ensures that there is only one concurrent call to `update`. // // Each call to `update` will attempt to swap `update_lock` from `false` to // `true`. If the CAS succeeds, the thread has obtained the update lock. If // the CAS fails, then the `update` call returns immediately and the update // is discarded. update_lock: AtomicBool, // Pointer to Arc<ReadinessQueueInner> readiness_queue: AtomicPtr<()>, // Tracks the number of `ReadyRef` pointers ref_count: AtomicUsize, } /// Stores the ReadinessNode state in an AtomicUsize. This wrapper around the /// atomic variable handles encoding / decoding `ReadinessState` values. struct AtomicState { inner: AtomicUsize, } const MASK_2: usize = 4 - 1; const MASK_4: usize = 16 - 1; const QUEUED_MASK: usize = 1 << QUEUED_SHIFT; const DROPPED_MASK: usize = 1 << DROPPED_SHIFT; const READINESS_SHIFT: usize = 0; const INTEREST_SHIFT: usize = 4; const POLL_OPT_SHIFT: usize = 8; const TOKEN_RD_SHIFT: usize = 12; const TOKEN_WR_SHIFT: usize = 14; const QUEUED_SHIFT: usize = 16; const DROPPED_SHIFT: usize = 17; /// Tracks all state for a single `ReadinessNode`. The state is packed into a /// `usize` variable from low to high bit as follows: /// /// 4 bits: Registration current readiness /// 4 bits: Registration interest /// 4 bits: Poll options /// 2 bits: Token position currently being read from by `poll` /// 2 bits: Token position last written to by `update` /// 1 bit: Queued flag, set when node is being pushed into MPSC queue. /// 1 bit: Dropped flag, set when all `Registration` handles have been dropped. #[derive(Debug, Copy, Clone, Eq, PartialEq)] struct ReadinessState(usize); /// Returned by `dequeue_node`. Represents the different states as described by /// the queue documentation on 1024cores.net. enum Dequeue { Data(*mut ReadinessNode), Empty, Inconsistent, } const AWAKEN: Token = Token(usize::MAX); const MAX_REFCOUNT: usize = (isize::MAX) as usize; /* * * ===== Poll ===== * */ impl Poll { /// Return a new `Poll` handle. /// /// This function will make a syscall to the operating system to create the /// system selector. If this syscall fails, `Poll::new` will return with the /// error. /// /// See [struct] level docs for more details. /// /// [struct]: struct.Poll.html /// /// # Examples /// /// ``` /// use mio::{Poll, Events}; /// use std::time::Duration; /// /// let poll = match Poll::new() { /// Ok(poll) => poll, /// Err(e) => panic!("failed to create Poll instance; err={:?}", e), /// }; /// /// // Create a structure to receive polled events /// let mut events = Events::with_capacity(1024); /// /// // Wait for events, but none will be received because no `Evented` /// // handles have been registered with this `Poll` instance. /// let n = poll.poll(&mut events, Some(Duration::from_millis(500))).unwrap(); /// assert_eq!(n, 0); /// ``` pub fn new() -> io::Result<Poll> { is_send::<Poll>(); is_sync::<Poll>(); let poll = Poll { selector: sys::Selector::new()?, readiness_queue: ReadinessQueue::new()?, lock_state: AtomicUsize::new(0), lock: Mutex::new(()), condvar: Condvar::new(), }; // Register the notification wakeup FD with the IO poller poll.readiness_queue.inner.awakener.register(&poll, AWAKEN, Ready::readable(), PollOpt::edge())?; Ok(poll) } /// Register an `Evented` handle with the `Poll` instance. /// /// Once registerd, the `Poll` instance will monitor the `Evented` handle /// for readiness state changes. When it notices a state change, it will /// return a readiness event for the handle the next time [`poll`] is /// called. /// /// See the [`struct`] docs for a high level overview. /// /// # Arguments /// /// `handle: &E: Evented`: This is the handle that the `Poll` instance /// should monitor for readiness state changes. /// /// `token: Token`: The caller picks a token to associate with the socket. /// When [`poll`] returns an event for the handle, this token is included. /// This allows the caller to map the event to its handle. The token /// associated with the `Evented` handle can be changed at any time by /// calling [`reregister`]. /// /// `token` cannot be `Token(usize::MAX)` as it is reserved for internal /// usage. /// /// See documentation on [`Token`] for an example showing how to pick /// [`Token`] values. /// /// `interest: Ready`: Specifies which operations `Poll` should monitor for /// readiness. `Poll` will only return readiness events for operations /// specified by this argument. /// /// If a socket is registered with [`readable`] interest and the socket /// becomes writable, no event will be returned from [`poll`]. /// /// The readiness interest for an `Evented` handle can be changed at any /// time by calling [`reregister`]. /// /// `opts: PollOpt`: Specifies the registration options. The most common /// options being [`level`] for level-triggered events, [`edge`] for /// edge-triggered events, and [`oneshot`]. /// /// The registration options for an `Evented` handle can be changed at any /// time by calling [`reregister`]. /// /// # Notes /// /// Unless otherwise specified, the caller should assume that once an /// `Evented` handle is registered with a `Poll` instance, it is bound to /// that `Poll` instance for the lifetime of the `Evented` handle. This /// remains true even if the `Evented` handle is deregistered from the poll /// instance using [`deregister`]. /// /// This function is **thread safe**. It can be called concurrently from /// multiple threads. /// /// [`struct`]: # /// [`reregister`]: #method.reregister /// [`deregister`]: #method.deregister /// [`poll`]: #method.poll /// [`level`]: struct.PollOpt.html#method.level /// [`edge`]: struct.PollOpt.html#method.edge /// [`oneshot`]: struct.PollOpt.html#method.oneshot /// [`Token`]: struct.Token.html /// /// # Examples /// /// ``` /// use mio::{Events, Poll, Ready, PollOpt, Token}; /// use mio::tcp::TcpStream; /// use std::time::{Duration, Instant}; /// /// let poll = Poll::new().unwrap(); /// let socket = TcpStream::connect(&"216.58.193.100:80".parse().unwrap()).unwrap(); /// /// // Register the socket with `poll` /// poll.register(&socket, Token(0), Ready::all(), PollOpt::edge()).unwrap(); /// /// let mut events = Events::with_capacity(1024); /// let start = Instant::now(); /// let timeout = Duration::from_millis(500); /// /// loop { /// let elapsed = start.elapsed(); /// /// if elapsed >= timeout { /// // Connection timed out /// return; /// } /// /// let remaining = timeout - elapsed; /// poll.poll(&mut events, Some(remaining)).unwrap(); /// /// for event in &events { /// if event.token() == Token(0) { /// // Something (probably) happened on the socket. /// return; /// } /// } /// } /// ``` pub fn register<E: ?Sized>(&self, handle: &E, token: Token, interest: Ready, opts: PollOpt) -> io::Result<()> where E: Evented { validate_args(token, interest)?; /* * Undefined behavior: * - Reusing a token with a different `Evented` without deregistering * (or closing) the original `Evented`. */ trace!("registering with poller"); // Register interests for this socket handle.register(self, token, interest, opts)?; Ok(()) } /// Re-register an `Evented` handle with the `Poll` instance. /// /// Re-registering an `Evented` handle allows changing the details of the /// registration. Specifically, it allows updating the associated `token`, /// `interest`, and `opts` specified in previous `register` and `reregister` /// calls. /// /// The `reregister` arguments fully override the previous values. In other /// words, if a socket is registered with [`readable`] interest and the call /// to `reregister` specifies [`writable`], then read interest is no longer /// requested for the handle. /// /// The `Evented` handle must have previously been registered with this /// instance of `Poll` otherwise the call to `reregister` will return with /// an error. /// /// `token` cannot be `Token(usize::MAX)` as it is reserved for internal /// usage. /// /// See the [`register`] documentation for details about the function /// arguments and see the [`struct`] docs for a high level overview of /// polling. /// /// # Examples /// /// ``` /// use mio::{Poll, Ready, PollOpt, Token}; /// use mio::tcp::TcpStream; /// /// let poll = Poll::new().unwrap(); /// let socket = TcpStream::connect(&"216.58.193.100:80".parse().unwrap()).unwrap(); /// /// // Register the socket with `poll`, requesting readable /// poll.register(&socket, Token(0), Ready::readable(), PollOpt::edge()).unwrap(); /// /// // Reregister the socket specifying a different token and write interest /// // instead. `PollOpt::edge()` must be specified even though that value /// // is not being changed. /// poll.reregister(&socket, Token(2), Ready::writable(), PollOpt::edge()).unwrap(); /// ``` /// /// [`struct`]: # /// [`register`]: #method.register /// [`readable`]: struct.Ready.html#method.readable /// [`writable`]: struct.Ready.html#method.writable pub fn reregister<E: ?Sized>(&self, handle: &E, token: Token, interest: Ready, opts: PollOpt) -> io::Result<()> where E: Evented { validate_args(token, interest)?; trace!("registering with poller"); // Register interests for this socket handle.reregister(self, token, interest, opts)?; Ok(()) } /// Deregister an `Evented` handle with the `Poll` instance. /// /// When an `Evented` handle is deregistered, the `Poll` instance will /// no longer monitor it for readiness state changes. Unlike disabling /// handles with [`oneshot`], deregistering clears up any internal resources /// needed to track the handle. /// /// A handle can be passed back to `register` after it has been /// deregistered; however, it must be passed back to the **same** `Poll` /// instance. /// /// `Evented` handles are automatically deregistered when they are dropped. /// It is common to never need to explicitly call `deregister`. /// /// # Examples /// /// ``` /// use mio::{Events, Poll, Ready, PollOpt, Token}; /// use mio::tcp::TcpStream; /// use std::time::Duration; /// /// let poll = Poll::new().unwrap(); /// let socket = TcpStream::connect(&"216.58.193.100:80".parse().unwrap()).unwrap(); /// /// // Register the socket with `poll` /// poll.register(&socket, Token(0), Ready::readable(), PollOpt::edge()).unwrap(); /// /// poll.deregister(&socket).unwrap(); /// /// let mut events = Events::with_capacity(1024); /// /// // Set a timeout because this poll should never receive any events. /// let n = poll.poll(&mut events, Some(Duration::from_secs(1))).unwrap(); /// assert_eq!(0, n); /// ``` pub fn deregister<E: ?Sized>(&self, handle: &E) -> io::Result<()> where E: Evented { trace!("deregistering handle with poller"); // Deregister interests for this socket handle.deregister(self)?; Ok(()) } /// Wait for readiness events /// /// Blocks the current thread and waits for readiness events for any of the /// `Evented` handles that have been registered with this `Poll` instance. /// The function will block until either at least one readiness event has /// been received or `timeout` has elapsed. A `timeout` of `None` means that /// `poll` will block until a readiness event has been received. /// /// The supplied `events` will be cleared and newly received readinss events /// will be pushed onto the end. At most `events.capacity()` events will be /// returned. If there are further pending readiness events, they will be /// returned on the next call to `poll`. /// /// A single call to `poll` may result in multiple readiness events being /// returned for a single `Evented` handle. For example, if a TCP socket /// becomes both readable and writable, it may be possible for a single /// readiness event to be returned with both [`readable`] and [`writable`] /// readiness **OR** two separate events may be returned, one with /// [`readable`] set and one with [`writable`] set. /// /// Note that the `timeout` will be rounded up to the system clock /// granularity (usually 1ms), and kernel scheduling delays mean that /// the blocking interval may be overrun by a small amount. /// /// `poll` returns the number of readiness events that have been pushed into /// `events` or `Err` when an error has been encountered with the system /// selector. /// /// See the [struct] level documentation for a higher level discussion of /// polling. /// /// [`readable`]: struct.Ready.html#method.readable /// [`writable`]: struct.Ready.html#method.writable /// [struct]: # /// /// # Examples /// /// A basic example -- establishing a `TcpStream` connection. /// /// ``` /// use mio::{Events, Poll, Ready, PollOpt, Token}; /// use mio::tcp::TcpStream; /// /// use std::net::{TcpListener, SocketAddr}; /// use std::thread; /// /// // Bind a server socket to connect to. /// let addr: SocketAddr = "127.0.0.1:0".parse().unwrap(); /// let server = TcpListener::bind(&addr).unwrap(); /// let addr = server.local_addr().unwrap().clone(); /// /// // Spawn a thread to accept the socket /// thread::spawn(move || { /// let _ = server.accept(); /// }); /// /// // Construct a new `Poll` handle as well as the `Events` we'll store into /// let poll = Poll::new().unwrap(); /// let mut events = Events::with_capacity(1024); /// /// // Connect the stream /// let stream = TcpStream::connect(&addr).unwrap(); /// /// // Register the stream with `Poll` /// poll.register(&stream, Token(0), Ready::all(), PollOpt::edge()).unwrap(); /// /// // Wait for the socket to become ready. This has to happens in a loop to /// // handle spurious wakeups. /// loop { /// poll.poll(&mut events, None).unwrap(); /// /// for event in &events { /// if event.token() == Token(0) && event.readiness().is_writable() { /// // The socket connected (probably, it could still be a spurious /// // wakeup) /// return; /// } /// } /// } /// ``` /// /// [struct]: # pub fn poll(&self, events: &mut Events, mut timeout: Option<Duration>) -> io::Result<usize> { let zero = Some(Duration::from_millis(0)); // At a high level, the synchronization strategy is to acquire access to // the critical section by transitioning the atomic from unlocked -> // locked. If the attempt fails, the thread will wait on the condition // variable. // // # Some more detail // // The `lock_state` atomic usize combines: // // - locked flag, stored in the least significant bit // - number of waiting threads, stored in the rest of the bits. // // When a thread transitions the locked flag from 0 -> 1, it has // obtained access to the critical section. // // When entering `poll`, a compare-and-swap from 0 -> 1 is attempted. // This is a fast path for the case when there are no concurrent calls // to poll, which is very common. // // On failure, the mutex is locked, and the thread attempts to increment // the number of waiting threads component of `lock_state`. If this is // successfully done while the locked flag is set, then the thread can // wait on the condition variable. // // When a thread exits the critical section, it unsets the locked flag. // If there are any waiters, which is atomically determined while // unsetting the locked flag, then the condvar is notified. let mut curr = self.lock_state.compare_and_swap(0, 1, SeqCst); if 0 != curr { // Enter slower path let mut lock = self.lock.lock().unwrap(); let mut inc = false; loop { if curr & 1 == 0 { // The lock is currently free, attempt to grab it let mut next = curr | 1; if inc { // The waiter count has previously been incremented, so // decrement it here next -= 2; } let actual = self.lock_state.compare_and_swap(curr, next, SeqCst); if actual != curr { curr = actual; continue; } // Lock acquired, break from the loop break; } if timeout == zero { if inc { self.lock_state.fetch_sub(2, SeqCst); } return Ok(0); } // The lock is currently held, so wait for it to become // free. If the waiter count hasn't been incremented yet, do // so now if !inc { let next = curr.checked_add(2).expect("overflow"); let actual = self.lock_state.compare_and_swap(curr, next, SeqCst); if actual != curr { curr = actual; continue; } // Track that the waiter count has been incremented for // this thread and fall through to the condvar waiting inc = true; } lock = match timeout { Some(to) => { let now = Instant::now(); // Wait to be notified let (l, _) = self.condvar.wait_timeout(lock, to).unwrap(); // See how much time was elapsed in the wait let elapsed = now.elapsed(); // Update `timeout` to reflect how much time is left to // wait. if elapsed >= to { timeout = zero; } else { // Update the timeout timeout = Some(to - elapsed); } l } None => { self.condvar.wait(lock).unwrap() } }; // Reload the state curr = self.lock_state.load(SeqCst); // Try to lock again... } } let ret = self.poll2(events, timeout); // Release the lock if 1 != self.lock_state.fetch_and(!1, Release) { // Acquire the mutex let _lock = self.lock.lock().unwrap(); // There is at least one waiting thread, so notify one self.condvar.notify_one(); } ret } #[inline] fn poll2(&self, events: &mut Events, timeout: Option<Duration>) -> io::Result<usize> { // Compute the timeout value passed to the system selector. If the // readiness queue has pending nodes, we still want to poll the system // selector for new events, but we don't want to block the thread to // wait for new events. let timeout = if timeout == Some(Duration::from_millis(0)) { // If blocking is not requested, then there is no need to prepare // the queue for sleep timeout } else if self.readiness_queue.prepare_for_sleep() { // The readiness queue is empty. The call to `prepare_for_sleep` // inserts `sleep_marker` into the queue. This signals to any // threads setting readiness that the `Poll::poll` is going to // sleep, so the awakener should be used. timeout } else { // The readiness queue is not empty, so do not block the thread. Some(Duration::from_millis(0)) }; // First get selector events let res = self.selector.select(&mut events.inner, AWAKEN, timeout); if res? { // Some awakeners require reading from a FD. self.readiness_queue.inner.awakener.cleanup(); } // Poll custom event queue self.readiness_queue.poll(&mut events.inner); // Return number of polled events Ok(events.len()) } } #[cfg(all(unix, not(target_os = "fuchsia")))] fn registerable(interest: Ready) -> bool { let unixinterest = UnixReady::from(interest); unixinterest.is_readable() || unixinterest.is_writable() || unixinterest.is_aio() } #[cfg(not(all(unix, not(target_os = "fuchsia"))))] fn registerable(interest: Ready) -> bool { interest.is_readable() || interest.is_writable() } fn validate_args(token: Token, interest: Ready) -> io::Result<()> { if token == AWAKEN { return Err(io::Error::new(io::ErrorKind::Other, "invalid token")); } if !registerable(interest) { return Err(io::Error::new(io::ErrorKind::Other, "interest must include readable or writable or aio")); } Ok(()) } impl fmt::Debug for Poll { fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result { write!(fmt, "Poll") } } #[cfg(all(unix, not(target_os = "fuchsia")))] impl AsRawFd for Poll { fn as_raw_fd(&self) -> RawFd { self.selector.as_raw_fd() } } /// A collection of readiness events. /// /// `Events` is passed as an argument to [`Poll::poll`] and will be used to /// receive any new readiness events received since the last call to [`poll`]. /// Usually, a single `Events` instance is created at the same time as the /// [`Poll`] and the single instance is reused for each call to [`poll`]. /// /// See [`Poll`] for more documentation on polling. /// /// # Examples /// /// ``` /// use mio::{Events, Poll}; /// use std::time::Duration; /// /// let mut events = Events::with_capacity(1024); /// let poll = Poll::new().unwrap(); /// /// assert_eq!(0, events.len()); /// /// // Register `Evented` handles with `poll` /// /// poll.poll(&mut events, Some(Duration::from_millis(100))).unwrap(); /// /// for event in &events { /// println!("event={:?}", event); /// } /// ``` /// /// [`Poll::poll`]: struct.Poll.html#method.poll /// [`poll`]: struct.Poll.html#method.poll /// [`Poll`]: struct.Poll.html pub struct Events { inner: sys::Events, } /// [`Events`] iterator. /// /// This struct is created by the [`iter`] method on [`Events`]. /// /// # Examples /// /// ``` /// use mio::{Events, Poll}; /// use std::time::Duration; /// /// let mut events = Events::with_capacity(1024); /// let poll = Poll::new().unwrap(); /// /// // Register handles with `poll` /// /// poll.poll(&mut events, Some(Duration::from_millis(100))).unwrap(); /// /// for event in events.iter() { /// println!("event={:?}", event); /// } /// ``` /// /// [`Events`]: struct.Events.html /// [`iter`]: struct.Events.html#method.iter #[derive(Debug)] pub struct Iter<'a> { inner: &'a Events, pos: usize, } impl Events { /// Return a new `Events` capable of holding up to `capacity` events. /// /// # Examples /// /// ``` /// use mio::Events; /// /// let events = Events::with_capacity(1024); /// /// assert_eq!(1024, events.capacity()); /// ``` pub fn with_capacity(capacity: usize) -> Events { Events { inner: sys::Events::with_capacity(capacity), } } /// Returns the `Event` at the given index, or `None` if the index is out of /// bounds. /// /// # Examples /// /// ``` /// use mio::{Events, Poll}; /// use std::time::Duration; /// /// let mut events = Events::with_capacity(1024); /// let poll = Poll::new().unwrap(); /// /// // Register handles with `poll` /// /// let n = poll.poll(&mut events, Some(Duration::from_millis(100))).unwrap(); /// /// for i in 0..n { /// println!("event={:?}", events.get(i).unwrap()); /// } /// ``` pub fn get(&self, idx: usize) -> Option<Event> { self.inner.get(idx) } /// Returns the number of `Event` values currently in `self`. /// /// # Examples /// /// ``` /// use mio::Events; /// /// let events = Events::with_capacity(1024); /// /// assert_eq!(0, events.len()); /// ``` pub fn len(&self) -> usize { self.inner.len() } /// Returns the number of `Event` values that `self` can hold. /// /// ``` /// use mio::Events; /// /// let events = Events::with_capacity(1024); /// /// assert_eq!(1024, events.capacity()); /// ``` pub fn capacity(&self) -> usize { self.inner.capacity() } /// Returns `true` if `self` contains no `Event` values. /// /// # Examples /// /// ``` /// use mio::Events; /// /// let events = Events::with_capacity(1024); /// /// assert!(events.is_empty()); /// ``` pub fn is_empty(&self) -> bool { self.inner.is_empty() } /// Returns an iterator over the `Event` values. /// /// # Examples /// /// ``` /// use mio::{Events, Poll}; /// use std::time::Duration; /// /// let mut events = Events::with_capacity(1024); /// let poll = Poll::new().unwrap(); /// /// // Register handles with `poll` /// /// poll.poll(&mut events, Some(Duration::from_millis(100))).unwrap(); /// /// for event in events.iter() { /// println!("event={:?}", event); /// } /// ``` pub fn iter(&self) -> Iter { Iter { inner: self, pos: 0 } } } impl<'a> IntoIterator for &'a Events { type Item = Event; type IntoIter = Iter<'a>; fn into_iter(self) -> Self::IntoIter { self.iter() } } impl<'a> Iterator for Iter<'a> { type Item = Event; fn next(&mut self) -> Option<Event> { let ret = self.inner.get(self.pos); self.pos += 1; ret } } impl fmt::Debug for Events { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { f.debug_struct("Events") .field("len", &self.len()) .field("capacity", &self.capacity()) .finish() } } // ===== Accessors for internal usage ===== pub fn selector(poll: &Poll) -> &sys::Selector { &poll.selector } /* * * ===== Registration ===== * */ // TODO: get rid of this, windows depends on it for now #[allow(dead_code)] pub fn new_registration(poll: &Poll, token: Token, ready: Ready, opt: PollOpt) -> (Registration, SetReadiness) { Registration::new_priv(poll, token, ready, opt) } impl Registration { /// Create and return a new `Registration` and the associated /// `SetReadiness`. /// /// See [struct] documentation for more detail and [`Poll`] /// for high level documentation on polling. /// /// # Examples /// /// ``` /// use mio::{Events, Ready, Registration, Poll, PollOpt, Token}; /// use std::thread; /// /// let (registration, set_readiness) = Registration::new2(); /// /// thread::spawn(move || { /// use std::time::Duration; /// thread::sleep(Duration::from_millis(500)); /// /// set_readiness.set_readiness(Ready::readable()); /// }); /// /// let poll = Poll::new().unwrap(); /// poll.register(®istration, Token(0), Ready::all(), PollOpt::edge()).unwrap(); /// /// let mut events = Events::with_capacity(256); /// /// loop { /// poll.poll(&mut events, None); /// /// for event in &events { /// if event.token() == Token(0) && event.readiness().is_readable() { /// return; /// } /// } /// } /// /// ``` /// [struct]: # /// [`Poll`]: struct.Poll.html pub fn new2() -> (Registration, SetReadiness) { // Allocate the registration node. The new node will have `ref_count` // set to 2: one SetReadiness, one Registration. let node = Box::into_raw(Box::new(ReadinessNode::new( ptr::null_mut(), Token(0), Ready::empty(), PollOpt::empty(), 2))); let registration = Registration { inner: RegistrationInner { node: node, }, }; let set_readiness = SetReadiness { inner: RegistrationInner { node: node, }, }; (registration, set_readiness) } #[deprecated(since = "0.6.5", note = "use `new2` instead")] #[cfg(feature = "with-deprecated")] #[doc(hidden)] pub fn new(poll: &Poll, token: Token, interest: Ready, opt: PollOpt) -> (Registration, SetReadiness) { Registration::new_priv(poll, token, interest, opt) } // TODO: Get rid of this (windows depends on it for now) fn new_priv(poll: &Poll, token: Token, interest: Ready, opt: PollOpt) -> (Registration, SetReadiness) { is_send::<Registration>(); is_sync::<Registration>(); is_send::<SetReadiness>(); is_sync::<SetReadiness>(); // Clone handle to the readiness queue, this bumps the ref count let queue = poll.readiness_queue.inner.clone(); // Convert to a *mut () pointer let queue: *mut () = unsafe { mem::transmute(queue) }; // Allocate the registration node. The new node will have `ref_count` // set to 3: one SetReadiness, one Registration, and one Poll handle. let node = Box::into_raw(Box::new(ReadinessNode::new( queue, token, interest, opt, 3))); let registration = Registration { inner: RegistrationInner { node: node, }, }; let set_readiness = SetReadiness { inner: RegistrationInner { node: node, }, }; (registration, set_readiness) } #[deprecated(since = "0.6.5", note = "use `Evented` impl")] #[cfg(feature = "with-deprecated")] #[doc(hidden)] pub fn update(&self, poll: &Poll, token: Token, interest: Ready, opts: PollOpt) -> io::Result<()> { self.inner.update(poll, token, interest, opts) } #[deprecated(since = "0.6.5", note = "use `Evented` impl")] #[cfg(feature = "with-deprecated")] #[doc(hidden)] pub fn deregister(&self, poll: &Poll) -> io::Result<()> { self.inner.update(poll, Token(0), Ready::empty(), PollOpt::empty()) } } impl Evented for Registration { fn register(&self, poll: &Poll, token: Token, interest: Ready, opts: PollOpt) -> io::Result<()> { self.inner.update(poll, token, interest, opts) } fn reregister(&self, poll: &Poll, token: Token, interest: Ready, opts: PollOpt) -> io::Result<()> { self.inner.update(poll, token, interest, opts) } fn deregister(&self, poll: &Poll) -> io::Result<()> { self.inner.update(poll, Token(0), Ready::empty(), PollOpt::empty()) } } impl Drop for Registration { fn drop(&mut self) { // `flag_as_dropped` toggles the `dropped` flag and notifies // `Poll::poll` to release its handle (which is just decrementing // the ref count). if self.inner.state.flag_as_dropped() { // Can't do anything if the queuing fails let _ = self.inner.enqueue_with_wakeup(); } } } impl fmt::Debug for Registration { fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result { fmt.debug_struct("Registration") .finish() } } impl SetReadiness { /// Returns the registration's current readiness. /// /// # Note /// /// There is no guarantee that `readiness` establishes any sort of memory /// ordering. Any concurrent data access must be synchronized using another /// strategy. /// /// # Examples /// /// ``` /// use mio::{Registration, Ready}; /// /// let (registration, set_readiness) = Registration::new2(); /// /// assert!(set_readiness.readiness().is_empty()); /// /// set_readiness.set_readiness(Ready::readable()).unwrap(); /// assert!(set_readiness.readiness().is_readable()); /// ``` pub fn readiness(&self) -> Ready { self.inner.readiness() } /// Set the registration's readiness /// /// If the associated `Registration` is registered with a [`Poll`] instance /// and has requested readiness events that include `ready`, then a call /// [`poll`] will receive a readiness event representing the readiness /// state change. /// /// # Note /// /// There is no guarantee that `readiness` establishes any sort of memory /// ordering. Any concurrent data access must be synchronized using another /// strategy. /// /// There is also no guarantee as to when the readiness event will be /// delivered to poll. A best attempt will be made to make the delivery in a /// "timely" fashion. For example, the following is **not** guaranteed to /// work: /// /// ``` /// use mio::{Events, Registration, Ready, Poll, PollOpt, Token}; /// /// let poll = Poll::new().unwrap(); /// let (registration, set_readiness) = Registration::new2(); /// /// poll.register(®istration, /// Token(0), /// Ready::readable(), /// PollOpt::edge()).unwrap(); /// /// // Set the readiness, then immediately poll to try to get the readiness /// // event /// set_readiness.set_readiness(Ready::readable()).unwrap(); /// /// let mut events = Events::with_capacity(1024); /// poll.poll(&mut events, None).unwrap(); /// /// // There is NO guarantee that the following will work. It is possible /// // that the readiness event will be delivered at a later time. /// let event = events.get(0).unwrap(); /// assert_eq!(event.token(), Token(0)); /// assert!(event.readiness().is_readable()); /// ``` /// /// # Examples /// /// A simple example, for a more elaborate example, see the [`Evented`] /// documentation. /// /// ``` /// use mio::{Registration, Ready}; /// /// let (registration, set_readiness) = Registration::new2(); /// /// assert!(set_readiness.readiness().is_empty()); /// /// set_readiness.set_readiness(Ready::readable()).unwrap(); /// assert!(set_readiness.readiness().is_readable()); /// ``` /// /// [`Registration`]: struct.Registration.html /// [`Poll`]: struct.Poll.html /// [`poll`]: struct.Poll.html#method.poll pub fn set_readiness(&self, ready: Ready) -> io::Result<()> { self.inner.set_readiness(ready) } } impl fmt::Debug for SetReadiness { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "SetReadiness") } } impl RegistrationInner { /// Get the registration's readiness. fn readiness(&self) -> Ready { self.state.load(Relaxed).readiness() } /// Set the registration's readiness. /// /// This function can be called concurrently by an arbitrary number of /// SetReadiness handles. fn set_readiness(&self, ready: Ready) -> io::Result<()> { // Load the current atomic state. let mut state = self.state.load(Acquire); let mut next; loop { next = state; if state.is_dropped() { // Node is dropped, no more notifications return Ok(()); } // Update the readiness next.set_readiness(ready); // If the readiness is not blank, try to obtain permission to // push the node into the readiness queue. if !next.effective_readiness().is_empty() { next.set_queued(); } let actual = self.state.compare_and_swap(state, next, AcqRel); if state == actual { break; } state = actual; } if !state.is_queued() && next.is_queued() { // We toggled the queued flag, making us responsible for queuing the // node in the MPSC readiness queue. self.enqueue_with_wakeup()?; } Ok(()) } /// Update the registration details associated with the node fn update(&self, poll: &Poll, token: Token, interest: Ready, opt: PollOpt) -> io::Result<()> { // First, ensure poll instances match // // Load the queue pointer, `Relaxed` is sufficient here as only the // pointer is being operated on. The actual memory is guaranteed to be // visible the `poll: &Poll` ref passed as an argument to the function. let mut queue = self.readiness_queue.load(Relaxed); let other: &*mut () = unsafe { mem::transmute(&poll.readiness_queue.inner) }; let other = *other; debug_assert!(mem::size_of::<Arc<ReadinessQueueInner>>() == mem::size_of::<*mut ()>()); if queue.is_null() { // Attempt to set the queue pointer. `Release` ordering synchronizes // with `Acquire` in `ensure_with_wakeup`. let actual = self.readiness_queue.compare_and_swap( queue, other, Release); if actual.is_null() { // The CAS succeeded, this means that the node's ref count // should be incremented to reflect that the `poll` function // effectively owns the node as well. // // `Relaxed` ordering used for the same reason as in // RegistrationInner::clone self.ref_count.fetch_add(1, Relaxed); // Note that the `queue` reference stored in our // `readiness_queue` field is intended to be a strong reference, // so now that we've successfully claimed the reference we bump // the refcount here. // // Down below in `release_node` when we deallocate this // `RegistrationInner` is where we'll transmute this back to an // arc and decrement the reference count. mem::forget(poll.readiness_queue.clone()); } else { // The CAS failed, another thread set the queue pointer, so ensure // that the pointer and `other` match if actual != other { return Err(io::Error::new(io::ErrorKind::Other, "registration handle associated with another `Poll` instance")); } } queue = other; } else if queue != other { return Err(io::Error::new(io::ErrorKind::Other, "registration handle associated with another `Poll` instance")); } unsafe { let actual = &poll.readiness_queue.inner as *const _ as *const usize; debug_assert_eq!(queue as usize, *actual); } // The `update_lock` atomic is used as a flag ensuring only a single // thread concurrently enters the `update` critical section. Any // concurrent calls to update are discarded. If coordinated updates are // required, the Mio user is responsible for handling that. // // Acquire / Release ordering is used on `update_lock` to ensure that // data access to the `token_*` variables are scoped to the critical // section. // Acquire the update lock. if self.update_lock.compare_and_swap(false, true, Acquire) { // The lock is already held. Discard the update return Ok(()); } // Relaxed ordering is acceptable here as the only memory that needs to // be visible as part of the update are the `token_*` variables, and // ordering has already been handled by the `update_lock` access. let mut state = self.state.load(Relaxed); let mut next; // Read the current token, again this memory has been ordered by the // acquire on `update_lock`. let curr_token_pos = state.token_write_pos(); let curr_token = unsafe { self::token(self, curr_token_pos) }; let mut next_token_pos = curr_token_pos; // If the `update` call is changing the token, then compute the next // available token slot and write the token there. // // Note that this computation is happening *outside* of the // compare-and-swap loop. The update lock ensures that only a single // thread could be mutating the write_token_position, so the // `next_token_pos` will never need to be recomputed even if // `token_read_pos` concurrently changes. This is because // `token_read_pos` can ONLY concurrently change to the current value of // `token_write_pos`, so `next_token_pos` will always remain valid. if token != curr_token { next_token_pos = state.next_token_pos(); // Update the token match next_token_pos { 0 => unsafe { *self.token_0.get() = token }, 1 => unsafe { *self.token_1.get() = token }, 2 => unsafe { *self.token_2.get() = token }, _ => unreachable!(), } } // Now enter the compare-and-swap loop loop { next = state; // The node is only dropped once all `Registration` handles are // dropped. Only `Registration` can call `update`. debug_assert!(!state.is_dropped()); // Update the write token position, this will also release the token // to Poll::poll. next.set_token_write_pos(next_token_pos); // Update readiness and poll opts next.set_interest(interest); next.set_poll_opt(opt); // If there is effective readiness, the node will need to be queued // for processing. This exact behavior is still TBD, so we are // conservative for now and always fire. // // See https://github.com/carllerche/mio/issues/535. if !next.effective_readiness().is_empty() { next.set_queued(); } // compare-and-swap the state values. Only `Release` is needed here. // The `Release` ensures that `Poll::poll` will see the token // update and the update function doesn't care about any other // memory visibility. let actual = self.state.compare_and_swap(state, next, Release); if actual == state { break; } // CAS failed, but `curr_token_pos` should not have changed given // that we still hold the update lock. debug_assert_eq!(curr_token_pos, actual.token_write_pos()); state = actual; } // Release the lock self.update_lock.store(false, Release); if !state.is_queued() && next.is_queued() { // We are responsible for enqueing the node. enqueue_with_wakeup(queue, self)?; } Ok(()) } } impl ops::Deref for RegistrationInner { type Target = ReadinessNode; fn deref(&self) -> &ReadinessNode { unsafe { &*self.node } } } impl Clone for RegistrationInner { fn clone(&self) -> RegistrationInner { // Using a relaxed ordering is alright here, as knowledge of the // original reference prevents other threads from erroneously deleting // the object. // // As explained in the [Boost documentation][1], Increasing the // reference counter can always be done with memory_order_relaxed: New // references to an object can only be formed from an existing // reference, and passing an existing reference from one thread to // another must already provide any required synchronization. // // [1]: (www.boost.org/doc/libs/1_55_0/doc/html/atomic/usage_examples.html) let old_size = self.ref_count.fetch_add(1, Relaxed); // However we need to guard against massive refcounts in case someone // is `mem::forget`ing Arcs. If we don't do this the count can overflow // and users will use-after free. We racily saturate to `isize::MAX` on // the assumption that there aren't ~2 billion threads incrementing // the reference count at once. This branch will never be taken in // any realistic program. // // We abort because such a program is incredibly degenerate, and we // don't care to support it. if old_size & !MAX_REFCOUNT != 0 { // TODO: This should really abort the process panic!(); } RegistrationInner { node: self.node.clone(), } } } impl Drop for RegistrationInner { fn drop(&mut self) { // Only handles releasing from `Registration` and `SetReadiness` // handles. Poll has to call this itself. release_node(self.node); } } /* * * ===== ReadinessQueue ===== * */ impl ReadinessQueue { /// Create a new `ReadinessQueue`. fn new() -> io::Result<ReadinessQueue> { is_send::<Self>(); is_sync::<Self>(); let end_marker = Box::new(ReadinessNode::marker()); let sleep_marker = Box::new(ReadinessNode::marker()); let closed_marker = Box::new(ReadinessNode::marker()); let ptr = &*end_marker as *const _ as *mut _; Ok(ReadinessQueue { inner: Arc::new(ReadinessQueueInner { awakener: sys::Awakener::new()?, head_readiness: AtomicPtr::new(ptr), tail_readiness: UnsafeCell::new(ptr), end_marker: end_marker, sleep_marker: sleep_marker, closed_marker: closed_marker, }) }) } /// Poll the queue for new events fn poll(&self, dst: &mut sys::Events) { // `until` is set with the first node that gets re-enqueued due to being // set to have level-triggered notifications. This prevents an infinite // loop where `Poll::poll` will keep dequeuing nodes it enqueues. let mut until = ptr::null_mut(); 'outer: while dst.len() < dst.capacity() { // Dequeue a node. If the queue is in an inconsistent state, then // stop polling. `Poll::poll` will be called again shortly and enter // a syscall, which should be enough to enable the other thread to // finish the queuing process. let ptr = match unsafe { self.inner.dequeue_node(until) } { Dequeue::Empty | Dequeue::Inconsistent => break, Dequeue::Data(ptr) => ptr, }; let node = unsafe { &*ptr }; // Read the node state with Acquire ordering. This allows reading // the token variables. let mut state = node.state.load(Acquire); let mut next; let mut readiness; let mut opt; loop { // Build up any changes to the readiness node's state and // attempt the CAS at the end next = state; // Given that the node was just read from the queue, the // `queued` flag should still be set. debug_assert!(state.is_queued()); // The dropped flag means we need to release the node and // perform no further processing on it. if state.is_dropped() { // Release the node and continue release_node(ptr); continue 'outer; } // Process the node readiness = state.effective_readiness(); opt = state.poll_opt(); if opt.is_edge() { // Mark the node as dequeued next.set_dequeued(); if opt.is_oneshot() && !readiness.is_empty() { next.disarm(); } } else if readiness.is_empty() { next.set_dequeued(); } // Ensure `token_read_pos` is set to `token_write_pos` so that // we read the most up to date token value. next.update_token_read_pos(); if state == next { break; } let actual = node.state.compare_and_swap(state, next, AcqRel); if actual == state { break; } state = actual; } // If the queued flag is still set, then the node must be requeued. // This typically happens when using level-triggered notifications. if next.is_queued() { if until.is_null() { // We never want to see the node again until = ptr; } // Requeue the node self.inner.enqueue_node(node); } if !readiness.is_empty() { // Get the token let token = unsafe { token(node, next.token_read_pos()) }; // Push the event dst.push_event(Event::new(readiness, token)); } } } /// Prepare the queue for the `Poll::poll` thread to block in the system /// selector. This involves changing `head_readiness` to `sleep_marker`. /// Returns true if successfull and `poll` can block. fn prepare_for_sleep(&self) -> bool { let end_marker = self.inner.end_marker(); let sleep_marker = self.inner.sleep_marker(); let tail = unsafe { *self.inner.tail_readiness.get() }; // If the tail is currently set to the sleep_marker, then check if the // head is as well. If it is, then the queue is currently ready to // sleep. If it is not, then the queue is not empty and there should be // no sleeping. if tail == sleep_marker { return self.inner.head_readiness.load(Acquire) == sleep_marker; } // If the tail is not currently set to `end_marker`, then the queue is // not empty. if tail != end_marker { return false; } self.inner.sleep_marker.next_readiness.store(ptr::null_mut(), Relaxed); let actual = self.inner.head_readiness.compare_and_swap( end_marker, sleep_marker, AcqRel); debug_assert!(actual != sleep_marker); if actual != end_marker { // The readiness queue is not empty return false; } // The current tail should be pointing to `end_marker` debug_assert!(unsafe { *self.inner.tail_readiness.get() == end_marker }); // The `end_marker` next pointer should be null debug_assert!(self.inner.end_marker.next_readiness.load(Relaxed).is_null()); // Update tail pointer. unsafe { *self.inner.tail_readiness.get() = sleep_marker; } true } } impl Drop for ReadinessQueue { fn drop(&mut self) { // Close the queue by enqueuing the closed node self.inner.enqueue_node(&*self.inner.closed_marker); loop { // Free any nodes that happen to be left in the readiness queue let ptr = match unsafe { self.inner.dequeue_node(ptr::null_mut()) } { Dequeue::Empty => break, Dequeue::Inconsistent => { // This really shouldn't be possible as all other handles to // `ReadinessQueueInner` are dropped, but handle this by // spinning I guess? continue; } Dequeue::Data(ptr) => ptr, }; let node = unsafe { &*ptr }; let state = node.state.load(Acquire); debug_assert!(state.is_queued()); release_node(ptr); } } } impl ReadinessQueueInner { fn wakeup(&self) -> io::Result<()> { self.awakener.wakeup() } /// Prepend the given node to the head of the readiness queue. This is done /// with relaxed ordering. Returns true if `Poll` needs to be woken up. fn enqueue_node_with_wakeup(&self, node: &ReadinessNode) -> io::Result<()> { if self.enqueue_node(node) { self.wakeup()?; } Ok(()) } /// Push the node into the readiness queue fn enqueue_node(&self, node: &ReadinessNode) -> bool { // This is the 1024cores.net intrusive MPSC queue [1] "push" function. let node_ptr = node as *const _ as *mut _; // Relaxed used as the ordering is "released" when swapping // `head_readiness` node.next_readiness.store(ptr::null_mut(), Relaxed); unsafe { let mut prev = self.head_readiness.load(Acquire); loop { if prev == self.closed_marker() { debug_assert!(node_ptr != self.closed_marker()); // debug_assert!(node_ptr != self.end_marker()); debug_assert!(node_ptr != self.sleep_marker()); if node_ptr != self.end_marker() { // The readiness queue is shutdown, but the enqueue flag was // set. This means that we are responsible for decrementing // the ready queue's ref count debug_assert!(node.ref_count.load(Relaxed) >= 2); release_node(node_ptr); } return false; } let act = self.head_readiness.compare_and_swap(prev, node_ptr, AcqRel); if prev == act { break; } prev = act; } debug_assert!((*prev).next_readiness.load(Relaxed).is_null()); (*prev).next_readiness.store(node_ptr, Release); prev == self.sleep_marker() } } /// Must only be called in `poll` or `drop` unsafe fn dequeue_node(&self, until: *mut ReadinessNode) -> Dequeue { // This is the 1024cores.net intrusive MPSC queue [1] "pop" function // with the modifications mentioned at the top of the file. let mut tail = *self.tail_readiness.get(); let mut next = (*tail).next_readiness.load(Acquire); if tail == self.end_marker() || tail == self.sleep_marker() || tail == self.closed_marker() { if next.is_null() { return Dequeue::Empty; } *self.tail_readiness.get() = next; tail = next; next = (*next).next_readiness.load(Acquire); } // Only need to check `until` at this point. `until` is either null, // which will never match tail OR it is a node that was pushed by // the current thread. This means that either: // // 1) The queue is inconsistent, which is handled explicitly // 2) We encounter `until` at this point in dequeue // 3) we will pop a different node if tail == until { return Dequeue::Empty; } if !next.is_null() { *self.tail_readiness.get() = next; return Dequeue::Data(tail); } if self.head_readiness.load(Acquire) != tail { return Dequeue::Inconsistent; } // Push the stub node self.enqueue_node(&*self.end_marker); next = (*tail).next_readiness.load(Acquire); if !next.is_null() { *self.tail_readiness.get() = next; return Dequeue::Data(tail); } Dequeue::Inconsistent } fn end_marker(&self) -> *mut ReadinessNode { &*self.end_marker as *const ReadinessNode as *mut ReadinessNode } fn sleep_marker(&self) -> *mut ReadinessNode { &*self.sleep_marker as *const ReadinessNode as *mut ReadinessNode } fn closed_marker(&self) -> *mut ReadinessNode { &*self.closed_marker as *const ReadinessNode as *mut ReadinessNode } } impl ReadinessNode { /// Return a new `ReadinessNode`, initialized with a ref_count of 3. fn new(queue: *mut (), token: Token, interest: Ready, opt: PollOpt, ref_count: usize) -> ReadinessNode { ReadinessNode { state: AtomicState::new(interest, opt), // Only the first token is set, the others are initialized to 0 token_0: UnsafeCell::new(token), token_1: UnsafeCell::new(Token(0)), token_2: UnsafeCell::new(Token(0)), next_readiness: AtomicPtr::new(ptr::null_mut()), update_lock: AtomicBool::new(false), readiness_queue: AtomicPtr::new(queue), ref_count: AtomicUsize::new(ref_count), } } fn marker() -> ReadinessNode { ReadinessNode { state: AtomicState::new(Ready::empty(), PollOpt::empty()), token_0: UnsafeCell::new(Token(0)), token_1: UnsafeCell::new(Token(0)), token_2: UnsafeCell::new(Token(0)), next_readiness: AtomicPtr::new(ptr::null_mut()), update_lock: AtomicBool::new(false), readiness_queue: AtomicPtr::new(ptr::null_mut()), ref_count: AtomicUsize::new(0), } } fn enqueue_with_wakeup(&self) -> io::Result<()> { let queue = self.readiness_queue.load(Acquire); if queue.is_null() { // Not associated with a queue, nothing to do return Ok(()); } enqueue_with_wakeup(queue, self) } } fn enqueue_with_wakeup(queue: *mut (), node: &ReadinessNode) -> io::Result<()> { debug_assert!(!queue.is_null()); // This is ugly... but we don't want to bump the ref count. let queue: &Arc<ReadinessQueueInner> = unsafe { mem::transmute(&queue) }; queue.enqueue_node_with_wakeup(node) } unsafe fn token(node: &ReadinessNode, pos: usize) -> Token { match pos { 0 => *node.token_0.get(), 1 => *node.token_1.get(), 2 => *node.token_2.get(), _ => unreachable!(), } } fn release_node(ptr: *mut ReadinessNode) { unsafe { // `AcqRel` synchronizes with other `release_node` functions and ensures // that the drop happens after any reads / writes on other threads. if (*ptr).ref_count.fetch_sub(1, AcqRel) != 1 { return; } let node = Box::from_raw(ptr); // Decrement the readiness_queue Arc let queue = node.readiness_queue.load(Acquire); if queue.is_null() { return; } let _: Arc<ReadinessQueueInner> = mem::transmute(queue); } } impl AtomicState { fn new(interest: Ready, opt: PollOpt) -> AtomicState { let state = ReadinessState::new(interest, opt); AtomicState { inner: AtomicUsize::new(state.into()), } } /// Loads the current `ReadinessState` fn load(&self, order: Ordering) -> ReadinessState { self.inner.load(order).into() } /// Stores a state if the current state is the same as `current`. fn compare_and_swap(&self, current: ReadinessState, new: ReadinessState, order: Ordering) -> ReadinessState { self.inner.compare_and_swap(current.into(), new.into(), order).into() } // Returns `true` if the node should be queued fn flag_as_dropped(&self) -> bool { let prev: ReadinessState = self.inner.fetch_or(DROPPED_MASK | QUEUED_MASK, Release).into(); // The flag should not have been previously set debug_assert!(!prev.is_dropped()); !prev.is_queued() } } impl ReadinessState { // Create a `ReadinessState` initialized with the provided arguments #[inline] fn new(interest: Ready, opt: PollOpt) -> ReadinessState { let interest = event::ready_as_usize(interest); let opt = event::opt_as_usize(opt); debug_assert!(interest <= MASK_4); debug_assert!(opt <= MASK_4); let mut val = interest << INTEREST_SHIFT; val |= opt << POLL_OPT_SHIFT; ReadinessState(val) } #[inline] fn get(&self, mask: usize, shift: usize) -> usize{ (self.0 >> shift) & mask } #[inline] fn set(&mut self, val: usize, mask: usize, shift: usize) { self.0 = (self.0 & !(mask << shift)) | (val << shift) } /// Get the readiness #[inline] fn readiness(&self) -> Ready { let v = self.get(MASK_4, READINESS_SHIFT); event::ready_from_usize(v) } #[inline] fn effective_readiness(&self) -> Ready { self.readiness() & self.interest() } /// Set the readiness #[inline] fn set_readiness(&mut self, v: Ready) { self.set(event::ready_as_usize(v), MASK_4, READINESS_SHIFT); } /// Get the interest #[inline] fn interest(&self) -> Ready { let v = self.get(MASK_4, INTEREST_SHIFT); event::ready_from_usize(v) } /// Set the interest #[inline] fn set_interest(&mut self, v: Ready) { self.set(event::ready_as_usize(v), MASK_4, INTEREST_SHIFT); } #[inline] fn disarm(&mut self) { self.set_interest(Ready::empty()); } /// Get the poll options #[inline] fn poll_opt(&self) -> PollOpt { let v = self.get(MASK_4, POLL_OPT_SHIFT); event::opt_from_usize(v) } /// Set the poll options #[inline] fn set_poll_opt(&mut self, v: PollOpt) { self.set(event::opt_as_usize(v), MASK_4, POLL_OPT_SHIFT); } #[inline] fn is_queued(&self) -> bool { self.0 & QUEUED_MASK == QUEUED_MASK } /// Set the queued flag #[inline] fn set_queued(&mut self) { // Dropped nodes should never be queued debug_assert!(!self.is_dropped()); self.0 |= QUEUED_MASK; } #[inline] fn set_dequeued(&mut self) { debug_assert!(self.is_queued()); self.0 &= !QUEUED_MASK } #[inline] fn is_dropped(&self) -> bool { self.0 & DROPPED_MASK == DROPPED_MASK } #[inline] fn token_read_pos(&self) -> usize { self.get(MASK_2, TOKEN_RD_SHIFT) } #[inline] fn token_write_pos(&self) -> usize { self.get(MASK_2, TOKEN_WR_SHIFT) } #[inline] fn next_token_pos(&self) -> usize { let rd = self.token_read_pos(); let wr = self.token_write_pos(); match wr { 0 => { match rd { 1 => 2, 2 => 1, 0 => 1, _ => unreachable!(), } } 1 => { match rd { 0 => 2, 2 => 0, 1 => 2, _ => unreachable!(), } } 2 => { match rd { 0 => 1, 1 => 0, 2 => 0, _ => unreachable!(), } } _ => unreachable!(), } } #[inline] fn set_token_write_pos(&mut self, val: usize) { self.set(val, MASK_2, TOKEN_WR_SHIFT); } #[inline] fn update_token_read_pos(&mut self) { let val = self.token_write_pos(); self.set(val, MASK_2, TOKEN_RD_SHIFT); } } impl From<ReadinessState> for usize { fn from(src: ReadinessState) -> usize { src.0 } } impl From<usize> for ReadinessState { fn from(src: usize) -> ReadinessState { ReadinessState(src) } } fn is_send<T: Send>() {} fn is_sync<T: Sync>() {} impl SelectorId { pub fn new() -> SelectorId { SelectorId { id: AtomicUsize::new(0), } } pub fn associate_selector(&self, poll: &Poll) -> io::Result<()> { let selector_id = self.id.load(Ordering::SeqCst); if selector_id != 0 && selector_id != poll.selector.id() { Err(io::Error::new(io::ErrorKind::Other, "socket already registered")) } else { self.id.store(poll.selector.id(), Ordering::SeqCst); Ok(()) } } } impl Clone for SelectorId { fn clone(&self) -> SelectorId { SelectorId { id: AtomicUsize::new(self.id.load(Ordering::SeqCst)), } } } #[test] #[cfg(all(unix, not(target_os = "fuchsia")))] pub fn as_raw_fd() { let poll = Poll::new().unwrap(); assert!(poll.as_raw_fd() > 0); }