1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
use std::fmt;
use std::io;
use std::hash;
use std::mem;
use std::cmp;
use std::ops::{Deref, DerefMut};
use std::sync::Arc;

use futures::{Async, Poll, Stream, Sink, StartSend, AsyncSink};

use io::Io;

const INITIAL_CAPACITY: usize = 8 * 1024;

/// A reference counted buffer of bytes.
///
/// An `EasyBuf` is a representation of a byte buffer where sub-slices of it can
/// be handed out efficiently, each with a `'static` lifetime which keeps the
/// data alive. The buffer also supports mutation but may require bytes to be
/// copied to complete the operation.
#[derive(Clone, Eq)]
pub struct EasyBuf {
    buf: Arc<Vec<u8>>,
    start: usize,
    end: usize,
}

/// An RAII object returned from `get_mut` which provides mutable access to the
/// underlying `Vec<u8>`.
pub struct EasyBufMut<'a> {
    buf: &'a mut Vec<u8>,
    end: &'a mut usize,
}

impl EasyBuf {
    /// Creates a new EasyBuf with no data and the default capacity.
    pub fn new() -> EasyBuf {
        EasyBuf::with_capacity(INITIAL_CAPACITY)
    }

    /// Creates a new EasyBuf with `cap` capacity.
    pub fn with_capacity(cap: usize) -> EasyBuf {
        EasyBuf {
            buf: Arc::new(Vec::with_capacity(cap)),
            start: 0,
            end: 0,
        }
    }

    /// Changes the starting index of this window to the index specified.
    ///
    /// Returns the windows back to chain multiple calls to this method.
    ///
    /// # Panics
    ///
    /// This method will panic if `start` is out of bounds for the underlying
    /// slice or if it comes after the `end` configured in this window.
    fn set_start(&mut self, start: usize) -> &mut EasyBuf {
        assert!(start <= self.buf.as_ref().len());
        assert!(start <= self.end);
        self.start = start;
        self
    }

    /// Changes the end index of this window to the index specified.
    ///
    /// Returns the windows back to chain multiple calls to this method.
    ///
    /// # Panics
    ///
    /// This method will panic if `end` is out of bounds for the underlying
    /// slice or if it comes after the `end` configured in this window.
    fn set_end(&mut self, end: usize) -> &mut EasyBuf {
        assert!(end <= self.buf.len());
        assert!(self.start <= end);
        self.end = end;
        self
    }

    /// Returns the number of bytes contained in this `EasyBuf`.
    pub fn len(&self) -> usize {
        self.end - self.start
    }

    /// Returns the inner contents of this `EasyBuf` as a slice.
    pub fn as_slice(&self) -> &[u8] {
        self.as_ref()
    }

    /// Splits the buffer into two at the given index.
    ///
    /// Afterwards `self` contains elements `[0, at)`, and the returned `EasyBuf`
    /// contains elements `[at, len)`.
    ///
    /// This is an O(1) operation that just increases the reference count and
    /// sets a few indexes.
    ///
    /// # Panics
    ///
    /// Panics if `at > len`
    pub fn split_off(&mut self, at: usize) -> EasyBuf {
        let mut other = EasyBuf { buf: self.buf.clone(), ..*self };
        let idx = self.start + at;
        other.set_start(idx);
        self.set_end(idx);
        return other
    }

    /// Splits the buffer into two at the given index.
    ///
    /// Afterwards `self` contains elements `[at, len)`, and the returned `EasyBuf`
    /// contains elements `[0, at)`.
    ///
    /// This is an O(1) operation that just increases the reference count and
    /// sets a few indexes.
    ///
    /// # Panics
    ///
    /// Panics if `at > len`
    pub fn drain_to(&mut self, at: usize) -> EasyBuf {
        let mut other = EasyBuf { buf: self.buf.clone(), ..*self };
        let idx = self.start + at;
        other.set_end(idx);
        self.set_start(idx);
        return other
    }

    /// Returns a mutable reference to the underlying growable buffer of bytes.
    ///
    /// If this `EasyBuf` is the only instance pointing at the underlying buffer
    /// of bytes, a direct mutable reference will be returned. Otherwise the
    /// contents of this `EasyBuf` will be reallocated in a fresh `Vec<u8>`
    /// allocation with the same capacity as an `EasyBuf` created with `EasyBuf::new()`,
    /// and that allocation will be returned.
    ///
    /// This operation **is not O(1)** as it may clone the entire contents of
    /// this buffer.
    ///
    /// The returned `EasyBufMut` type implement `Deref` and `DerefMut` to
    /// `Vec<u8>` can the byte buffer can be manipulated using the standard
    /// `Vec<u8>` methods.
    pub fn get_mut(&mut self) -> EasyBufMut {
        // Fast path if we can get mutable access to our own current
        // buffer.
        //
        // TODO: this should be a match or an if-let
        if Arc::get_mut(&mut self.buf).is_some() {
            let buf = Arc::get_mut(&mut self.buf).unwrap();
            buf.drain(self.end..);
            buf.drain(..self.start);
            self.start = 0;
            return EasyBufMut { buf: buf, end: &mut self.end }
        }

        // If we couldn't get access above then we give ourself a new buffer
        // here.
        let mut v = Vec::with_capacity(cmp::max(INITIAL_CAPACITY, self.as_ref().len()));
        v.extend_from_slice(self.as_ref());
        self.start = 0;
        self.buf = Arc::new(v);
        EasyBufMut {
            buf: Arc::get_mut(&mut self.buf).unwrap(),
            end: &mut self.end,
        }
    }
}

impl AsRef<[u8]> for EasyBuf {
    fn as_ref(&self) -> &[u8] {
        &self.buf[self.start..self.end]
    }
}

impl<'a> Deref for EasyBufMut<'a> {
    type Target = Vec<u8>;

    fn deref(&self) -> &Vec<u8> {
        self.buf
    }
}

impl<'a> DerefMut for EasyBufMut<'a> {
    fn deref_mut(&mut self) -> &mut Vec<u8> {
        self.buf
    }
}

impl From<Vec<u8>> for EasyBuf {
    fn from(vec: Vec<u8>) -> EasyBuf {
        let end = vec.len();
        EasyBuf {
            buf: Arc::new(vec),
            start: 0,
            end: end,
        }
    }
}

impl<T: AsRef<[u8]>> PartialEq<T> for EasyBuf {
    fn eq(&self, other: &T) -> bool {
        self.as_slice().eq(other.as_ref())
    }
}

impl Ord for EasyBuf {
    fn cmp(&self, other: &Self) -> cmp::Ordering {
        self.as_slice().cmp(other.as_slice())
    }
}

impl<T: AsRef<[u8]>> PartialOrd<T> for EasyBuf {
    fn partial_cmp(&self, other: &T) -> Option<cmp::Ordering> {
        self.as_slice().partial_cmp(other.as_ref())
    }
}

impl hash::Hash for EasyBuf {
    fn hash<H: hash::Hasher>(&self, state: &mut H) {
        self.as_slice().hash(state)
    }
}

impl<'a> Drop for EasyBufMut<'a> {
    fn drop(&mut self) {
        *self.end = self.buf.len();
    }
}

impl fmt::Debug for EasyBuf {
    fn fmt(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
        let bytes = self.as_ref();
        let len = self.len();
        if len < 10 {
            write!(formatter, "EasyBuf{{len={}/{} {:?}}}", self.len(), self.buf.len(), bytes)
        } else { // choose a more compact representation
            write!(formatter, "EasyBuf{{len={}/{} [{}, {}, {}, {}, ..., {}, {}, {}, {}]}}", self.len(), self.buf.len(), bytes[0], bytes[1], bytes[2], bytes[3], bytes[len-4], bytes[len-3], bytes[len-2], bytes[len-1])
        }
    }
}

impl Into<Vec<u8>> for EasyBuf {
    fn into(mut self) -> Vec<u8> {
        mem::replace(self.get_mut().buf, vec![])
    }
}

/// Encoding and decoding of frames via buffers.
///
/// This trait is used when constructing an instance of `Framed`. It provides
/// two types: `In`, for decoded input frames, and `Out`, for outgoing frames
/// that need to be encoded. It also provides methods to actually perform the
/// encoding and decoding, which work with corresponding buffer types.
///
/// The trait itself is implemented on a type that can track state for decoding
/// or encoding, which is particularly useful for streaming parsers. In many
/// cases, though, this type will simply be a unit struct (e.g. `struct
/// HttpCodec`).
pub trait Codec {
    /// The type of decoded frames.
    type In;

    /// The type of frames to be encoded.
    type Out;

    /// Attempts to decode a frame from the provided buffer of bytes.
    ///
    /// This method is called by `Framed` whenever bytes are ready to be parsed.
    /// The provided buffer of bytes is what's been read so far, and this
    /// instance of `Decode` can determine whether an entire frame is in the
    /// buffer and is ready to be returned.
    ///
    /// If an entire frame is available, then this instance will remove those
    /// bytes from the buffer provided and return them as a decoded
    /// frame. Note that removing bytes from the provided buffer doesn't always
    /// necessarily copy the bytes, so this should be an efficient operation in
    /// most circumstances.
    ///
    /// If the bytes look valid, but a frame isn't fully available yet, then
    /// `Ok(None)` is returned. This indicates to the `Framed` instance that
    /// it needs to read some more bytes before calling this method again.
    ///
    /// Finally, if the bytes in the buffer are malformed then an error is
    /// returned indicating why. This informs `Framed` that the stream is now
    /// corrupt and should be terminated.
    fn decode(&mut self, buf: &mut EasyBuf) -> io::Result<Option<Self::In>>;

    /// A default method available to be called when there are no more bytes
    /// available to be read from the underlying I/O.
    ///
    /// This method defaults to calling `decode` and returns an error if
    /// `Ok(None)` is returned. Typically this doesn't need to be implemented
    /// unless the framing protocol differs near the end of the stream.
    fn decode_eof(&mut self, buf: &mut EasyBuf) -> io::Result<Self::In> {
        match try!(self.decode(buf)) {
            Some(frame) => Ok(frame),
            None => Err(io::Error::new(io::ErrorKind::Other,
                                       "bytes remaining on stream")),
        }
    }

    /// Encodes a frame into the buffer provided.
    ///
    /// This method will encode `msg` into the byte buffer provided by `buf`.
    /// The `buf` provided is an internal buffer of the `Framed` instance and
    /// will be written out when possible.
    fn encode(&mut self, msg: Self::Out, buf: &mut Vec<u8>) -> io::Result<()>;
}

/// A unified `Stream` and `Sink` interface to an underlying `Io` object, using
/// the `Codec` trait to encode and decode frames.
///
/// You can acquire a `Framed` instance by using the `Io::framed` adapter.
pub struct Framed<T, C> {
    upstream: T,
    codec: C,
    eof: bool,
    is_readable: bool,
    rd: EasyBuf,
    wr: Vec<u8>,
}

impl<T: Io, C: Codec> Stream for Framed<T, C> {
    type Item = C::In;
    type Error = io::Error;

    fn poll(&mut self) -> Poll<Option<C::In>, io::Error> {
        loop {
            // If the read buffer has any pending data, then it could be
            // possible that `decode` will return a new frame. We leave it to
            // the decoder to optimize detecting that more data is required.
            if self.is_readable {
                if self.eof {
                    if self.rd.len() == 0 {
                        return Ok(None.into())
                    } else {
                        let frame = try!(self.codec.decode_eof(&mut self.rd));
                        return Ok(Async::Ready(Some(frame)))
                    }
                }
                trace!("attempting to decode a frame");
                if let Some(frame) = try!(self.codec.decode(&mut self.rd)) {
                    trace!("frame decoded from buffer");
                    return Ok(Async::Ready(Some(frame)));
                }
                self.is_readable = false;
            }

            assert!(!self.eof);

            // Otherwise, try to read more data and try again
            //
            // TODO: shouldn't read_to_end, that may read a lot
            let before = self.rd.len();
            let ret = self.upstream.read_to_end(&mut self.rd.get_mut());
            match ret {
                Ok(_n) => self.eof = true,
                Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => {
                    if self.rd.len() == before {
                        return Ok(Async::NotReady)
                    }
                }
                Err(e) => return Err(e),
            }
            self.is_readable = true;
        }
    }
}

impl<T: Io, C: Codec> Sink for Framed<T, C> {
    type SinkItem = C::Out;
    type SinkError = io::Error;

    fn start_send(&mut self, item: C::Out) -> StartSend<C::Out, io::Error> {
        // If the buffer is already over 8KiB, then attempt to flush it. If after flushing it's
        // *still* over 8KiB, then apply backpressure (reject the send).
        const BACKPRESSURE_BOUNDARY: usize = INITIAL_CAPACITY;
        if self.wr.len() > BACKPRESSURE_BOUNDARY {
            try!(self.poll_complete());
            if self.wr.len() > BACKPRESSURE_BOUNDARY {
                return Ok(AsyncSink::NotReady(item));
            }
        }

        try!(self.codec.encode(item, &mut self.wr));
        Ok(AsyncSink::Ready)
    }

    fn poll_complete(&mut self) -> Poll<(), io::Error> {
        trace!("flushing framed transport");

        while !self.wr.is_empty() {
            trace!("writing; remaining={}", self.wr.len());
            let n = try_nb!(self.upstream.write(&self.wr));
            if n == 0 {
                return Err(io::Error::new(io::ErrorKind::WriteZero,
                                          "failed to write frame to transport"));
            }
            self.wr.drain(..n);
        }

        // Try flushing the underlying IO
        try_nb!(self.upstream.flush());

        trace!("framed transport flushed");
        return Ok(Async::Ready(()));
    }

    fn close(&mut self) -> Poll<(), io::Error> {
        try_ready!(self.poll_complete());
        Ok(().into())
    }
}

pub fn framed<T, C>(io: T, codec: C) -> Framed<T, C> {
    Framed {
        upstream: io,
        codec: codec,
        eof: false,
        is_readable: false,
        rd: EasyBuf::new(),
        wr: Vec::with_capacity(INITIAL_CAPACITY),
    }
}

impl<T, C> Framed<T, C> {

    /// Returns a reference to the underlying I/O stream wrapped by `Framed`.
    ///
    /// Note that care should be taken to not tamper with the underlying stream
    /// of data coming in as it may corrupt the stream of frames otherwise being
    /// worked with.
    pub fn get_ref(&self) -> &T {
        &self.upstream
    }

    /// Returns a mutable reference to the underlying I/O stream wrapped by
    /// `Framed`.
    ///
    /// Note that care should be taken to not tamper with the underlying stream
    /// of data coming in as it may corrupt the stream of frames otherwise being
    /// worked with.
    pub fn get_mut(&mut self) -> &mut T {
        &mut self.upstream
    }

    /// Consumes the `Framed`, returning its underlying I/O stream.
    ///
    /// Note that care should be taken to not tamper with the underlying stream
    /// of data coming in as it may corrupt the stream of frames otherwise being
    /// worked with.
    pub fn into_inner(self) -> T {
        self.upstream
    }
}

#[cfg(test)]
mod tests {
    use super::{INITIAL_CAPACITY, EasyBuf};
    use std::mem;

    #[test]
    fn debug_empty_easybuf() {
        let buf: EasyBuf = vec![].into();
        assert_eq!("EasyBuf{len=0/0 []}", format!("{:?}", buf));
    }

    #[test]
    fn debug_small_easybuf() {
        let buf: EasyBuf = vec![1, 2, 3, 4, 5, 6].into();
        assert_eq!("EasyBuf{len=6/6 [1, 2, 3, 4, 5, 6]}", format!("{:?}", buf));
    }

    #[test]
    fn debug_small_easybuf_split() {
        let mut buf: EasyBuf = vec![1, 2, 3, 4, 5, 6].into();
        let split = buf.split_off(4);
        assert_eq!("EasyBuf{len=4/6 [1, 2, 3, 4]}", format!("{:?}", buf));
        assert_eq!("EasyBuf{len=2/6 [5, 6]}", format!("{:?}", split));
    }

    #[test]
    fn debug_large_easybuf() {
        let vec: Vec<u8> = (0u8..255u8).collect();
        let buf: EasyBuf = vec.into();
        assert_eq!("EasyBuf{len=255/255 [0, 1, 2, 3, ..., 251, 252, 253, 254]}", format!("{:?}", buf));
    }

    #[test]
    fn easybuf_get_mut_sliced() {
        let vec: Vec<u8> = (0u8..10u8).collect();
        let mut buf: EasyBuf = vec.into();
        buf.split_off(9);
        buf.drain_to(3);
        assert_eq!(*buf.get_mut(), [3, 4, 5, 6, 7, 8]);
    }

    #[test]
    fn easybuf_get_mut_sliced_allocating_at_least_initial_capacity() {
        let vec: Vec<u8> = (0u8..10u8).collect();
        let mut buf: EasyBuf = vec.into();
        buf.split_off(9);
        buf.drain_to(3);
        // Clone to make shared
        let clone = buf.clone();
        assert_eq!(*buf.get_mut(), [3, 4, 5, 6, 7, 8]);
        assert_eq!(buf.get_mut().buf.capacity(), INITIAL_CAPACITY);
        mem::drop(clone); // prevent unused warning
    }

    #[test]
    fn easybuf_get_mut_sliced_allocating_required_capacity() {
        let vec: Vec<u8> = (0..INITIAL_CAPACITY * 2).map(|_|0u8).collect();
        let mut buf: EasyBuf = vec.into();
        buf.drain_to(INITIAL_CAPACITY / 2);
        let clone = buf.clone();
        assert_eq!(buf.get_mut().buf.capacity(), INITIAL_CAPACITY + INITIAL_CAPACITY / 2);
        mem::drop(clone)
    }

    #[test]
    fn easybuf_into_vec_simple() {
        let vec: Vec<u8> = (0u8..10u8).collect();
        let reference = vec.clone();
        let buf: EasyBuf = vec.into();
        let original_pointer = buf.buf.as_ref().as_ptr();
        let result: Vec<u8> = buf.into();
        assert_eq!(result, reference);
        let new_pointer = result.as_ptr();
        assert_eq!(original_pointer, new_pointer, "Into<Vec<u8>> should reuse the exclusive Vec");
    }

    #[test]
    fn easybuf_into_vec_sliced() {
        let vec: Vec<u8> = (0u8..10u8).collect();
        let mut buf: EasyBuf = vec.into();
        let original_pointer = buf.buf.as_ref().as_ptr();
        buf.split_off(9);
        buf.drain_to(3);
        let result: Vec<u8> = buf.into();
        let reference: Vec<u8> = (3u8..9u8).collect();
        assert_eq!(result, reference);
        let new_pointer = result.as_ptr();
        assert_eq!(original_pointer, new_pointer, "Into<Vec<u8>> should reuse the exclusive Vec");
    }

    #[test]
    fn easybuf_into_vec_sliced_allocating() {
        let vec: Vec<u8> = (0u8..10u8).collect();
        let mut buf: EasyBuf = vec.into();
        let original_pointer = buf.buf.as_ref().as_ptr();
        // Create a clone to create second reference to this EasyBuf and force allocation
        let original = buf.clone();
        buf.split_off(9);
        buf.drain_to(3);
        let result: Vec<u8> = buf.into();
        let reference: Vec<u8> = (3u8..9u8).collect();
        assert_eq!(result, reference);
        let original_reference: EasyBuf =(0u8..10u8).collect::<Vec<u8>>().into();
        assert_eq!(original.as_ref(), original_reference.as_ref());
        let new_pointer = result.as_ptr();
        assert_ne!(original_pointer, new_pointer, "A new vec should be allocated");
    }

    #[test]
    fn easybuf_equality_same_underlying_vec() {
        let mut buf: EasyBuf = (0u8..10).collect::<Vec<_>>().into();
        assert_eq!(buf, buf);
        let other = buf.drain_to(5);
        assert_ne!(buf, other);

        let buf: EasyBuf = (0u8..5).collect::<Vec<_>>().into();
        assert_eq!(buf, other);
    }

    #[test]
    fn easybuf_equality_different_underlying_vec() {
        let mut buf: EasyBuf = (0u8..10).collect::<Vec<_>>().into();
        let mut other: EasyBuf = (0u8..10).collect::<Vec<_>>().into();
        assert_eq!(buf, other);

        buf = buf.drain_to(5);
        assert_ne!(buf, other);

        other = other.drain_to(5);
        assert_eq!(buf, other);
    }
}