1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
//! `Future`-powered I/O at the core of Tokio //! //! This crate uses the `futures` crate to provide an event loop ("reactor //! core") which can be used to drive I/O like TCP and UDP, spawned future //! tasks, and other events like channels/timeouts. All asynchronous I/O is //! powered by the `mio` crate. //! //! The concrete types provided in this crate are relatively bare bones but are //! intended to be the essential foundation for further projects needing an //! event loop. In this crate you'll find: //! //! * TCP, both streams and listeners //! * UDP sockets //! * Timeouts //! * An event loop to run futures //! //! More functionality is likely to be added over time, but otherwise the crate //! is intended to be flexible, with the `PollEvented` type accepting any //! type that implements `mio::Evented`. For example, the `tokio-uds` crate //! uses `PollEvented` to provide support for Unix domain sockets. //! //! Some other important tasks covered by this crate are: //! //! * The ability to spawn futures into an event loop. The `Handle` and `Remote` //! types have a `spawn` method which allows executing a future on an event //! loop. The `Handle::spawn` method crucially does not require the future //! itself to be `Send`. //! //! * The `Io` trait serves as an abstraction for future crates to build on top //! of. This packages up `Read` and `Write` functionality as well as the //! ability to poll for readiness on both ends. //! //! * All I/O is futures-aware. If any action in this crate returns "not ready" //! or "would block", then the current future task is scheduled to receive a //! notification when it would otherwise make progress. //! //! You can find more extensive documentation in terms of tutorials at //! [https://tokio.rs](https://tokio.rs). //! //! # Examples //! //! A simple TCP echo server: //! //! ```no_run //! extern crate futures; //! extern crate tokio_core; //! //! use futures::{Future, Stream}; //! use tokio_core::io::{copy, Io}; //! use tokio_core::net::TcpListener; //! use tokio_core::reactor::Core; //! //! fn main() { //! // Create the event loop that will drive this server //! let mut core = Core::new().unwrap(); //! let handle = core.handle(); //! //! // Bind the server's socket //! let addr = "127.0.0.1:12345".parse().unwrap(); //! let listener = TcpListener::bind(&addr, &handle).unwrap(); //! //! // Pull out a stream of sockets for incoming connections //! let server = listener.incoming().for_each(|(sock, _)| { //! // Split up the reading and writing parts of the //! // socket //! let (reader, writer) = sock.split(); //! //! // A future that echos the data and returns how //! // many bytes were copied... //! let bytes_copied = copy(reader, writer); //! //! // ... after which we'll print what happened //! let handle_conn = bytes_copied.map(|amt| { //! println!("wrote {} bytes", amt) //! }).map_err(|err| { //! println!("IO error {:?}", err) //! }); //! //! // Spawn the future as a concurrent task //! handle.spawn(handle_conn); //! //! Ok(()) //! }); //! //! // Spin up the server on the event loop //! core.run(server).unwrap(); //! } //! ``` #![doc(html_root_url = "https://docs.rs/tokio-core/0.1")] #![deny(missing_docs)] extern crate bytes; #[macro_use] extern crate futures; extern crate iovec; extern crate mio; extern crate slab; extern crate tokio_io; #[macro_use] extern crate scoped_tls; #[macro_use] extern crate log; #[macro_use] pub mod io; mod heap; #[doc(hidden)] pub mod channel; pub mod net; pub mod reactor; use std::io as sio; fn would_block() -> sio::Error { sio::Error::new(sio::ErrorKind::WouldBlock, "would block") }