1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
use std::io; use std::mem; use std::net::{self, SocketAddr, Ipv4Addr, Ipv6Addr}; use std::fmt; use futures::{Async, Future, Poll}; use mio; use reactor::{Handle, PollEvented}; /// An I/O object representing a UDP socket. pub struct UdpSocket { io: PollEvented<mio::net::UdpSocket>, } mod frame; pub use self::frame::{UdpFramed, UdpCodec}; impl UdpSocket { /// Create a new UDP socket bound to the specified address. /// /// This function will create a new UDP socket and attempt to bind it to the /// `addr` provided. If the result is `Ok`, the socket has successfully bound. pub fn bind(addr: &SocketAddr, handle: &Handle) -> io::Result<UdpSocket> { let udp = try!(mio::net::UdpSocket::bind(addr)); UdpSocket::new(udp, handle) } fn new(socket: mio::net::UdpSocket, handle: &Handle) -> io::Result<UdpSocket> { let io = try!(PollEvented::new(socket, handle)); Ok(UdpSocket { io: io }) } /// Creates a new `UdpSocket` from the previously bound socket provided. /// /// The socket given will be registered with the event loop that `handle` is /// associated with. This function requires that `socket` has previously /// been bound to an address to work correctly. /// /// This can be used in conjunction with net2's `UdpBuilder` interface to /// configure a socket before it's handed off, such as setting options like /// `reuse_address` or binding to multiple addresses. pub fn from_socket(socket: net::UdpSocket, handle: &Handle) -> io::Result<UdpSocket> { let udp = try!(mio::net::UdpSocket::from_socket(socket)); UdpSocket::new(udp, handle) } /// Provides a `Stream` and `Sink` interface for reading and writing to this /// `UdpSocket` object, using the provided `UdpCodec` to read and write the /// raw data. /// /// Raw UDP sockets work with datagrams, but higher-level code usually /// wants to batch these into meaningful chunks, called "frames". This /// method layers framing on top of this socket by using the `UdpCodec` /// trait to handle encoding and decoding of messages frames. Note that /// the incoming and outgoing frame types may be distinct. /// /// This function returns a *single* object that is both `Stream` and /// `Sink`; grouping this into a single object is often useful for layering /// things which require both read and write access to the underlying /// object. /// /// If you want to work more directly with the streams and sink, consider /// calling `split` on the `UdpFramed` returned by this method, which will /// break them into separate objects, allowing them to interact more /// easily. pub fn framed<C: UdpCodec>(self, codec: C) -> UdpFramed<C> { frame::new(self, codec) } /// Returns the local address that this stream is bound to. pub fn local_addr(&self) -> io::Result<SocketAddr> { self.io.get_ref().local_addr() } /// Test whether this socket is ready to be read or not. /// /// If the socket is *not* readable then the current task is scheduled to /// get a notification when the socket does become readable. That is, this /// is only suitable for calling in a `Future::poll` method and will /// automatically handle ensuring a retry once the socket is readable again. pub fn poll_read(&self) -> Async<()> { self.io.poll_read() } /// Test whether this socket is ready to be written to or not. /// /// If the socket is *not* writable then the current task is scheduled to /// get a notification when the socket does become writable. That is, this /// is only suitable for calling in a `Future::poll` method and will /// automatically handle ensuring a retry once the socket is writable again. pub fn poll_write(&self) -> Async<()> { self.io.poll_write() } /// Sends data on the socket to the given address. On success, returns the /// number of bytes written. /// /// Address type can be any implementor of `ToSocketAddrs` trait. See its /// documentation for concrete examples. pub fn send_to(&self, buf: &[u8], target: &SocketAddr) -> io::Result<usize> { if let Async::NotReady = self.io.poll_write() { return Err(::would_block()) } match self.io.get_ref().send_to(buf, target) { Ok(n) => Ok(n), Err(e) => { if e.kind() == io::ErrorKind::WouldBlock { self.io.need_write(); } Err(e) } } } /// Creates a future that will write the entire contents of the buffer /// `buf` provided as a datagram to this socket. /// /// The returned future will return after data has been written to the /// outbound socket. The future will resolve to the stream as well as the /// buffer (for reuse if needed). /// /// Any error which happens during writing will cause both the stream and /// the buffer to get destroyed. Note that failure to write the entire /// buffer is considered an error for the purposes of sending a datagram. /// /// The `buf` parameter here only requires the `AsRef<[u8]>` trait, which /// should be broadly applicable to accepting data which can be converted /// to a slice. The `Window` struct is also available in this crate to /// provide a different window into a slice if necessary. pub fn send_dgram<T>(self, buf: T, addr: SocketAddr) -> SendDgram<T> where T: AsRef<[u8]>, { SendDgram { state: SendState::Writing { sock: self, addr: addr, buf: buf, }, } } /// Receives data from the socket. On success, returns the number of bytes /// read and the address from whence the data came. pub fn recv_from(&self, buf: &mut [u8]) -> io::Result<(usize, SocketAddr)> { if let Async::NotReady = self.io.poll_read() { return Err(::would_block()) } match self.io.get_ref().recv_from(buf) { Ok(n) => Ok(n), Err(e) => { if e.kind() == io::ErrorKind::WouldBlock { self.io.need_read(); } Err(e) } } } /// Creates a future that receive a datagram to be written to the buffer /// provided. /// /// The returned future will return after a datagram has been received on /// this socket. The future will resolve to the socket, the buffer, the /// amount of data read, and the address the data was received from. /// /// An error during reading will cause the socket and buffer to get /// destroyed and the socket will be returned. /// /// The `buf` parameter here only requires the `AsMut<[u8]>` trait, which /// should be broadly applicable to accepting data which can be converted /// to a slice. The `Window` struct is also available in this crate to /// provide a different window into a slice if necessary. pub fn recv_dgram<T>(self, buf: T) -> RecvDgram<T> where T: AsMut<[u8]>, { RecvDgram { state: RecvState::Reading { sock: self, buf: buf, }, } } /// Gets the value of the `SO_BROADCAST` option for this socket. /// /// For more information about this option, see /// [`set_broadcast`][link]. /// /// [link]: #method.set_broadcast pub fn broadcast(&self) -> io::Result<bool> { self.io.get_ref().broadcast() } /// Sets the value of the `SO_BROADCAST` option for this socket. /// /// When enabled, this socket is allowed to send packets to a broadcast /// address. pub fn set_broadcast(&self, on: bool) -> io::Result<()> { self.io.get_ref().set_broadcast(on) } /// Gets the value of the `IP_MULTICAST_LOOP` option for this socket. /// /// For more information about this option, see /// [`set_multicast_loop_v4`][link]. /// /// [link]: #method.set_multicast_loop_v4 pub fn multicast_loop_v4(&self) -> io::Result<bool> { self.io.get_ref().multicast_loop_v4() } /// Sets the value of the `IP_MULTICAST_LOOP` option for this socket. /// /// If enabled, multicast packets will be looped back to the local socket. /// Note that this may not have any affect on IPv6 sockets. pub fn set_multicast_loop_v4(&self, on: bool) -> io::Result<()> { self.io.get_ref().set_multicast_loop_v4(on) } /// Gets the value of the `IP_MULTICAST_TTL` option for this socket. /// /// For more information about this option, see /// [`set_multicast_ttl_v4`][link]. /// /// [link]: #method.set_multicast_ttl_v4 pub fn multicast_ttl_v4(&self) -> io::Result<u32> { self.io.get_ref().multicast_ttl_v4() } /// Sets the value of the `IP_MULTICAST_TTL` option for this socket. /// /// Indicates the time-to-live value of outgoing multicast packets for /// this socket. The default value is 1 which means that multicast packets /// don't leave the local network unless explicitly requested. /// /// Note that this may not have any affect on IPv6 sockets. pub fn set_multicast_ttl_v4(&self, ttl: u32) -> io::Result<()> { self.io.get_ref().set_multicast_ttl_v4(ttl) } /// Gets the value of the `IPV6_MULTICAST_LOOP` option for this socket. /// /// For more information about this option, see /// [`set_multicast_loop_v6`][link]. /// /// [link]: #method.set_multicast_loop_v6 pub fn multicast_loop_v6(&self) -> io::Result<bool> { self.io.get_ref().multicast_loop_v6() } /// Sets the value of the `IPV6_MULTICAST_LOOP` option for this socket. /// /// Controls whether this socket sees the multicast packets it sends itself. /// Note that this may not have any affect on IPv4 sockets. pub fn set_multicast_loop_v6(&self, on: bool) -> io::Result<()> { self.io.get_ref().set_multicast_loop_v6(on) } /// Gets the value of the `IP_TTL` option for this socket. /// /// For more information about this option, see [`set_ttl`][link]. /// /// [link]: #method.set_ttl pub fn ttl(&self) -> io::Result<u32> { self.io.get_ref().ttl() } /// Sets the value for the `IP_TTL` option on this socket. /// /// This value sets the time-to-live field that is used in every packet sent /// from this socket. pub fn set_ttl(&self, ttl: u32) -> io::Result<()> { self.io.get_ref().set_ttl(ttl) } /// Executes an operation of the `IP_ADD_MEMBERSHIP` type. /// /// This function specifies a new multicast group for this socket to join. /// The address must be a valid multicast address, and `interface` is the /// address of the local interface with which the system should join the /// multicast group. If it's equal to `INADDR_ANY` then an appropriate /// interface is chosen by the system. pub fn join_multicast_v4(&self, multiaddr: &Ipv4Addr, interface: &Ipv4Addr) -> io::Result<()> { self.io.get_ref().join_multicast_v4(multiaddr, interface) } /// Executes an operation of the `IPV6_ADD_MEMBERSHIP` type. /// /// This function specifies a new multicast group for this socket to join. /// The address must be a valid multicast address, and `interface` is the /// index of the interface to join/leave (or 0 to indicate any interface). pub fn join_multicast_v6(&self, multiaddr: &Ipv6Addr, interface: u32) -> io::Result<()> { self.io.get_ref().join_multicast_v6(multiaddr, interface) } /// Executes an operation of the `IP_DROP_MEMBERSHIP` type. /// /// For more information about this option, see /// [`join_multicast_v4`][link]. /// /// [link]: #method.join_multicast_v4 pub fn leave_multicast_v4(&self, multiaddr: &Ipv4Addr, interface: &Ipv4Addr) -> io::Result<()> { self.io.get_ref().leave_multicast_v4(multiaddr, interface) } /// Executes an operation of the `IPV6_DROP_MEMBERSHIP` type. /// /// For more information about this option, see /// [`join_multicast_v6`][link]. /// /// [link]: #method.join_multicast_v6 pub fn leave_multicast_v6(&self, multiaddr: &Ipv6Addr, interface: u32) -> io::Result<()> { self.io.get_ref().leave_multicast_v6(multiaddr, interface) } } impl fmt::Debug for UdpSocket { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { self.io.get_ref().fmt(f) } } /// A future used to write the entire contents of some data to a UDP socket. /// /// This is created by the `UdpSocket::send_dgram` method. pub struct SendDgram<T> { state: SendState<T>, } enum SendState<T> { Writing { sock: UdpSocket, buf: T, addr: SocketAddr, }, Empty, } fn incomplete_write(reason: &str) -> io::Error { io::Error::new(io::ErrorKind::Other, reason) } impl<T> Future for SendDgram<T> where T: AsRef<[u8]>, { type Item = (UdpSocket, T); type Error = io::Error; fn poll(&mut self) -> Poll<(UdpSocket, T), io::Error> { match self.state { SendState::Writing { ref sock, ref buf, ref addr } => { let n = try_nb!(sock.send_to(buf.as_ref(), addr)); if n != buf.as_ref().len() { return Err(incomplete_write("failed to send entire message \ in datagram")) } } SendState::Empty => panic!("poll a SendDgram after it's done"), } match mem::replace(&mut self.state, SendState::Empty) { SendState::Writing { sock, buf, addr: _ } => { Ok(Async::Ready((sock, buf))) } SendState::Empty => panic!(), } } } /// A future used to receive a datagram from a UDP socket. /// /// This is created by the `UdpSocket::recv_dgram` method. pub struct RecvDgram<T> { state: RecvState<T>, } enum RecvState<T> { Reading { sock: UdpSocket, buf: T, }, Empty, } impl<T> Future for RecvDgram<T> where T: AsMut<[u8]>, { type Item = (UdpSocket, T, usize, SocketAddr); type Error = io::Error; fn poll(&mut self) -> Poll<Self::Item, io::Error> { let (n, addr) = match self.state { RecvState::Reading { ref sock, ref mut buf } => { try_nb!(sock.recv_from(buf.as_mut())) } RecvState::Empty => panic!("poll a RecvDgram after it's done"), }; match mem::replace(&mut self.state, RecvState::Empty) { RecvState::Reading { sock, buf } => { Ok(Async::Ready((sock, buf, n, addr))) } RecvState::Empty => panic!(), } } } #[cfg(unix)] mod sys { use std::os::unix::prelude::*; use super::UdpSocket; impl AsRawFd for UdpSocket { fn as_raw_fd(&self) -> RawFd { self.io.get_ref().as_raw_fd() } } } #[cfg(windows)] mod sys { // TODO: let's land these upstream with mio and then we can add them here. // // use std::os::windows::prelude::*; // use super::UdpSocket; // // impl AsRawHandle for UdpSocket { // fn as_raw_handle(&self) -> RawHandle { // self.io.get_ref().as_raw_handle() // } // } }