1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
//! The core reactor driving all I/O
//!
//! This module contains the `Core` type which is the reactor for all I/O
//! happening in `tokio-core`. This reactor (or event loop) is used to run
//! futures, schedule tasks, issue I/O requests, etc.

use std::cell::RefCell;
use std::cmp;
use std::fmt;
use std::io::{self, ErrorKind};
use std::mem;
use std::rc::{Rc, Weak};
use std::sync::Arc;
use std::sync::atomic::{AtomicUsize, ATOMIC_USIZE_INIT, Ordering};
use std::time::{Instant, Duration};

use futures::{Future, IntoFuture, Async};
use futures::future::{self, Executor, ExecuteError};
use futures::executor::{self, Spawn, Notify};
use futures::sync::mpsc;
use futures::task::Task;
use mio;
use mio::event::Evented;
use slab::Slab;

use heap::{Heap, Slot};

mod io_token;
mod timeout_token;

mod poll_evented;
mod timeout;
mod interval;
pub use self::poll_evented::PollEvented;
pub use self::timeout::Timeout;
pub use self::interval::Interval;

static NEXT_LOOP_ID: AtomicUsize = ATOMIC_USIZE_INIT;
scoped_thread_local!(static CURRENT_LOOP: Core);

/// An event loop.
///
/// The event loop is the main source of blocking in an application which drives
/// all other I/O events and notifications happening. Each event loop can have
/// multiple handles pointing to it, each of which can then be used to create
/// various I/O objects to interact with the event loop in interesting ways.
// TODO: expand this
pub struct Core {
    events: mio::Events,
    tx: mpsc::UnboundedSender<Message>,
    rx: RefCell<Spawn<mpsc::UnboundedReceiver<Message>>>,
    _rx_registration: mio::Registration,
    rx_readiness: Arc<MySetReadiness>,

    inner: Rc<RefCell<Inner>>,

    // Used for determining when the future passed to `run` is ready. Once the
    // registration is passed to `io` above we never touch it again, just keep
    // it alive.
    _future_registration: mio::Registration,
    future_readiness: Arc<MySetReadiness>,
}

struct Inner {
    id: usize,
    io: mio::Poll,

    // Dispatch slabs for I/O and futures events
    io_dispatch: Slab<ScheduledIo>,
    task_dispatch: Slab<ScheduledTask>,

    // Timer wheel keeping track of all timeouts. The `usize` stored in the
    // timer wheel is an index into the slab below.
    //
    // The slab below keeps track of the timeouts themselves as well as the
    // state of the timeout itself. The `TimeoutToken` type is an index into the
    // `timeouts` slab.
    timer_heap: Heap<(Instant, usize)>,
    timeouts: Slab<(Option<Slot>, TimeoutState)>,
}

/// An unique ID for a Core
///
/// An ID by which different cores may be distinguished. Can be compared and used as an index in
/// a `HashMap`.
///
/// The ID is globally unique and never reused.
#[derive(Clone,Copy,Eq,PartialEq,Hash,Debug)]
pub struct CoreId(usize);

/// Handle to an event loop, used to construct I/O objects, send messages, and
/// otherwise interact indirectly with the event loop itself.
///
/// Handles can be cloned, and when cloned they will still refer to the
/// same underlying event loop.
#[derive(Clone)]
pub struct Remote {
    id: usize,
    tx: mpsc::UnboundedSender<Message>,
}

/// A non-sendable handle to an event loop, useful for manufacturing instances
/// of `LoopData`.
#[derive(Clone)]
pub struct Handle {
    remote: Remote,
    inner: Weak<RefCell<Inner>>,
}

struct ScheduledIo {
    readiness: Arc<AtomicUsize>,
    reader: Option<Task>,
    writer: Option<Task>,
}

struct ScheduledTask {
    _registration: mio::Registration,
    spawn: Option<Spawn<Box<Future<Item=(), Error=()>>>>,
    wake: Option<Arc<MySetReadiness>>,
}

enum TimeoutState {
    NotFired,
    Fired,
    Waiting(Task),
}

enum Direction {
    Read,
    Write,
}

enum Message {
    DropSource(usize),
    Schedule(usize, Task, Direction),
    UpdateTimeout(usize, Task),
    ResetTimeout(usize, Instant),
    CancelTimeout(usize),
    Run(Box<FnBox>),
}

const TOKEN_MESSAGES: mio::Token = mio::Token(0);
const TOKEN_FUTURE: mio::Token = mio::Token(1);
const TOKEN_START: usize = 2;

impl Core {
    /// Creates a new event loop, returning any error that happened during the
    /// creation.
    pub fn new() -> io::Result<Core> {
        let io = try!(mio::Poll::new());
        let future_pair = mio::Registration::new2();
        try!(io.register(&future_pair.0,
                         TOKEN_FUTURE,
                         mio::Ready::readable(),
                         mio::PollOpt::level()));
        let (tx, rx) = mpsc::unbounded();
        let channel_pair = mio::Registration::new2();
        try!(io.register(&channel_pair.0,
                         TOKEN_MESSAGES,
                         mio::Ready::readable(),
                         mio::PollOpt::level()));
        let rx_readiness = Arc::new(MySetReadiness(channel_pair.1));
        rx_readiness.notify(0);

        Ok(Core {
            events: mio::Events::with_capacity(1024),
            tx: tx,
            rx: RefCell::new(executor::spawn(rx)),
            _rx_registration: channel_pair.0,
            rx_readiness: rx_readiness,

            _future_registration: future_pair.0,
            future_readiness: Arc::new(MySetReadiness(future_pair.1)),

            inner: Rc::new(RefCell::new(Inner {
                id: NEXT_LOOP_ID.fetch_add(1, Ordering::Relaxed),
                io: io,
                io_dispatch: Slab::with_capacity(1),
                task_dispatch: Slab::with_capacity(1),
                timeouts: Slab::with_capacity(1),
                timer_heap: Heap::new(),
            })),
        })
    }

    /// Returns a handle to this event loop which cannot be sent across threads
    /// but can be used as a proxy to the event loop itself.
    ///
    /// Handles are cloneable and clones always refer to the same event loop.
    /// This handle is typically passed into functions that create I/O objects
    /// to bind them to this event loop.
    pub fn handle(&self) -> Handle {
        Handle {
            remote: self.remote(),
            inner: Rc::downgrade(&self.inner),
        }
    }

    /// Generates a remote handle to this event loop which can be used to spawn
    /// tasks from other threads into this event loop.
    pub fn remote(&self) -> Remote {
        Remote {
            id: self.inner.borrow().id,
            tx: self.tx.clone(),
        }
    }

    /// Runs a future until completion, driving the event loop while we're
    /// otherwise waiting for the future to complete.
    ///
    /// This function will begin executing the event loop and will finish once
    /// the provided future is resolved. Note that the future argument here
    /// crucially does not require the `'static` nor `Send` bounds. As a result
    /// the future will be "pinned" to not only this thread but also this stack
    /// frame.
    ///
    /// This function will return the value that the future resolves to once
    /// the future has finished. If the future never resolves then this function
    /// will never return.
    ///
    /// # Panics
    ///
    /// This method will **not** catch panics from polling the future `f`. If
    /// the future panics then it's the responsibility of the caller to catch
    /// that panic and handle it as appropriate.
    pub fn run<F>(&mut self, f: F) -> Result<F::Item, F::Error>
        where F: Future,
    {
        let mut task = executor::spawn(f);
        let mut future_fired = true;

        loop {
            if future_fired {
                let res = try!(CURRENT_LOOP.set(self, || {
                    task.poll_future_notify(&self.future_readiness, 0)
                }));
                if let Async::Ready(e) = res {
                    return Ok(e)
                }
            }
            future_fired = self.poll(None);
        }
    }

    /// Performs one iteration of the event loop, blocking on waiting for events
    /// for at most `max_wait` (forever if `None`).
    ///
    /// It only makes sense to call this method if you've previously spawned
    /// a future onto this event loop.
    ///
    /// `loop { lp.turn(None) }` is equivalent to calling `run` with an
    /// empty future (one that never finishes).
    pub fn turn(&mut self, max_wait: Option<Duration>) {
        self.poll(max_wait);
    }

    fn poll(&mut self, max_wait: Option<Duration>) -> bool {
        // Given the `max_wait` variable specified, figure out the actual
        // timeout that we're going to pass to `poll`. This involves taking a
        // look at active timers on our heap as well.
        let start = Instant::now();
        let timeout = self.inner.borrow_mut().timer_heap.peek().map(|t| {
            if t.0 < start {
                Duration::new(0, 0)
            } else {
                t.0 - start
            }
        });
        let timeout = match (max_wait, timeout) {
            (Some(d1), Some(d2)) => Some(cmp::min(d1, d2)),
            (max_wait, timeout) => max_wait.or(timeout),
        };

        // Block waiting for an event to happen, peeling out how many events
        // happened.
        let amt = match self.inner.borrow_mut().io.poll(&mut self.events, timeout) {
            Ok(a) => a,
            Err(ref e) if e.kind() == ErrorKind::Interrupted => return false,
            Err(e) => panic!("error in poll: {}", e),
        };

        let after_poll = Instant::now();
        debug!("loop poll - {:?}", after_poll - start);
        debug!("loop time - {:?}", after_poll);

        // Process all timeouts that may have just occurred, updating the
        // current time since
        self.consume_timeouts(after_poll);

        // Process all the events that came in, dispatching appropriately
        let mut fired = false;
        for i in 0..self.events.len() {
            let event = self.events.get(i).unwrap();
            let token = event.token();
            trace!("event {:?} {:?}", event.readiness(), event.token());

            if token == TOKEN_MESSAGES {
                self.rx_readiness.0.set_readiness(mio::Ready::empty()).unwrap();
                CURRENT_LOOP.set(&self, || self.consume_queue());
            } else if token == TOKEN_FUTURE {
                self.future_readiness.0.set_readiness(mio::Ready::empty()).unwrap();
                fired = true;
            } else {
                self.dispatch(token, event.readiness());
            }
        }
        debug!("loop process - {} events, {:?}", amt, after_poll.elapsed());
        return fired
    }

    fn dispatch(&mut self, token: mio::Token, ready: mio::Ready) {
        let token = usize::from(token) - TOKEN_START;
        if token % 2 == 0 {
            self.dispatch_io(token / 2, ready)
        } else {
            self.dispatch_task(token / 2)
        }
    }

    fn dispatch_io(&mut self, token: usize, ready: mio::Ready) {
        let mut reader = None;
        let mut writer = None;
        let mut inner = self.inner.borrow_mut();
        if let Some(io) = inner.io_dispatch.get_mut(token) {
            io.readiness.fetch_or(ready2usize(ready), Ordering::Relaxed);
            if ready.is_writable() {
                writer = io.writer.take();
            }
            if !(ready & (!mio::Ready::writable())).is_empty() {
                reader = io.reader.take();
            }
        }
        drop(inner);
        // TODO: don't notify the same task twice
        if let Some(reader) = reader {
            self.notify_handle(reader);
        }
        if let Some(writer) = writer {
            self.notify_handle(writer);
        }
    }

    fn dispatch_task(&mut self, token: usize) {
        let mut inner = self.inner.borrow_mut();
        let (task, wake) = match inner.task_dispatch.get_mut(token) {
            Some(slot) => (slot.spawn.take(), slot.wake.take()),
            None => return,
        };
        let (mut task, wake) = match (task, wake) {
            (Some(task), Some(wake)) => (task, wake),
            _ => return,
        };
        wake.0.set_readiness(mio::Ready::empty()).unwrap();
        drop(inner);
        let res = CURRENT_LOOP.set(self, || {
            task.poll_future_notify(&wake, 0)
        });
        let _task_to_drop;
        inner = self.inner.borrow_mut();
        match res {
            Ok(Async::NotReady) => {
                assert!(inner.task_dispatch[token].spawn.is_none());
                inner.task_dispatch[token].spawn = Some(task);
                inner.task_dispatch[token].wake = Some(wake);
            }
            Ok(Async::Ready(())) |
            Err(()) => {
                _task_to_drop = inner.task_dispatch.remove(token).unwrap();
            }
        }
        drop(inner);
    }

    fn consume_timeouts(&mut self, now: Instant) {
        loop {
            let mut inner = self.inner.borrow_mut();
            match inner.timer_heap.peek() {
                Some(head) if head.0 <= now => {}
                Some(_) => break,
                None => break,
            };
            let (_, slab_idx) = inner.timer_heap.pop().unwrap();

            trace!("firing timeout: {}", slab_idx);
            inner.timeouts[slab_idx].0.take().unwrap();
            let handle = inner.timeouts[slab_idx].1.fire();
            drop(inner);
            if let Some(handle) = handle {
                self.notify_handle(handle);
            }
        }
    }

    /// Method used to notify a task handle.
    ///
    /// Note that this should be used instead of `handle.notify()` to ensure
    /// that the `CURRENT_LOOP` variable is set appropriately.
    fn notify_handle(&self, handle: Task) {
        debug!("notifying a task handle");
        CURRENT_LOOP.set(&self, || handle.notify());
    }

    fn consume_queue(&self) {
        debug!("consuming notification queue");
        // TODO: can we do better than `.unwrap()` here?
        loop {
            let msg = self.rx.borrow_mut().poll_stream_notify(&self.rx_readiness, 0).unwrap();
            match msg {
                Async::Ready(Some(msg)) => self.notify(msg),
                Async::NotReady |
                Async::Ready(None) => break,
            }
        }
    }

    fn notify(&self, msg: Message) {
        match msg {
            Message::DropSource(tok) => self.inner.borrow_mut().drop_source(tok),
            Message::Schedule(tok, wake, dir) => {
                let task = self.inner.borrow_mut().schedule(tok, wake, dir);
                if let Some(task) = task {
                    self.notify_handle(task);
                }
            }
            Message::UpdateTimeout(t, handle) => {
                let task = self.inner.borrow_mut().update_timeout(t, handle);
                if let Some(task) = task {
                    self.notify_handle(task);
                }
            }
            Message::ResetTimeout(t, at) => {
                self.inner.borrow_mut().reset_timeout(t, at);
            }
            Message::CancelTimeout(t) => {
                self.inner.borrow_mut().cancel_timeout(t)
            }
            Message::Run(r) => r.call_box(self),
        }
    }

    /// Get the ID of this loop
    pub fn id(&self) -> CoreId {
        CoreId(self.inner.borrow().id)
    }
}

impl<F> Executor<F> for Core
    where F: Future<Item = (), Error = ()> + 'static,
{
    fn execute(&self, future: F) -> Result<(), ExecuteError<F>> {
        self.handle().execute(future)
    }
}

impl fmt::Debug for Core {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        f.debug_struct("Core")
         .field("id", &self.id())
         .finish()
    }
}

impl Inner {
    fn add_source(&mut self, source: &Evented)
                  -> io::Result<(Arc<AtomicUsize>, usize)> {
        debug!("adding a new I/O source");
        let sched = ScheduledIo {
            readiness: Arc::new(AtomicUsize::new(0)),
            reader: None,
            writer: None,
        };
        if self.io_dispatch.vacant_entry().is_none() {
            let amt = self.io_dispatch.len();
            self.io_dispatch.reserve_exact(amt);
        }
        let entry = self.io_dispatch.vacant_entry().unwrap();
        try!(self.io.register(source,
                              mio::Token(TOKEN_START + entry.index() * 2),
                              mio::Ready::readable() |
                                mio::Ready::writable() |
                                platform::all(),
                              mio::PollOpt::edge()));
        Ok((sched.readiness.clone(), entry.insert(sched).index()))
    }

    fn deregister_source(&mut self, source: &Evented) -> io::Result<()> {
        self.io.deregister(source)
    }

    fn drop_source(&mut self, token: usize) {
        debug!("dropping I/O source: {}", token);
        self.io_dispatch.remove(token).unwrap();
    }

    fn schedule(&mut self, token: usize, wake: Task, dir: Direction)
                -> Option<Task> {
        debug!("scheduling direction for: {}", token);
        let sched = self.io_dispatch.get_mut(token).unwrap();
        let (slot, ready) = match dir {
            Direction::Read => (&mut sched.reader, !mio::Ready::writable()),
            Direction::Write => (&mut sched.writer, mio::Ready::writable()),
        };
        if sched.readiness.load(Ordering::SeqCst) & ready2usize(ready) != 0 {
            debug!("cancelling block");
            *slot = None;
            Some(wake)
        } else {
            debug!("blocking");
            *slot = Some(wake);
            None
        }
    }

    fn add_timeout(&mut self, at: Instant) -> usize {
        if self.timeouts.vacant_entry().is_none() {
            let len = self.timeouts.len();
            self.timeouts.reserve_exact(len);
        }
        let entry = self.timeouts.vacant_entry().unwrap();
        let slot = self.timer_heap.push((at, entry.index()));
        let entry = entry.insert((Some(slot), TimeoutState::NotFired));
        debug!("added a timeout: {}", entry.index());
        return entry.index();
    }

    fn update_timeout(&mut self, token: usize, handle: Task) -> Option<Task> {
        debug!("updating a timeout: {}", token);
        self.timeouts[token].1.block(handle)
    }

    fn reset_timeout(&mut self, token: usize, at: Instant) {
        let pair = &mut self.timeouts[token];
        // TODO: avoid remove + push and instead just do one sift of the heap?
        // In theory we could update it in place and then do the percolation
        // as necessary
        if let Some(slot) = pair.0.take() {
            self.timer_heap.remove(slot);
        }
        let slot = self.timer_heap.push((at, token));
        *pair = (Some(slot), TimeoutState::NotFired);
        debug!("set a timeout: {}", token);
    }

    fn cancel_timeout(&mut self, token: usize) {
        debug!("cancel a timeout: {}", token);
        let pair = self.timeouts.remove(token);
        if let Some((Some(slot), _state)) = pair {
            self.timer_heap.remove(slot);
        }
    }

    fn spawn(&mut self, future: Box<Future<Item=(), Error=()>>) {
        if self.task_dispatch.vacant_entry().is_none() {
            let len = self.task_dispatch.len();
            self.task_dispatch.reserve_exact(len);
        }
        let entry = self.task_dispatch.vacant_entry().unwrap();
        let token = TOKEN_START + 2 * entry.index() + 1;
        let pair = mio::Registration::new2();
        self.io.register(&pair.0,
                         mio::Token(token),
                         mio::Ready::readable(),
                         mio::PollOpt::level())
            .expect("cannot fail future registration with mio");
        let unpark = Arc::new(MySetReadiness(pair.1));
        unpark.notify(0);
        entry.insert(ScheduledTask {
            spawn: Some(executor::spawn(future)),
            wake: Some(unpark),
            _registration: pair.0,
        });
    }
}

impl Remote {
    fn send(&self, msg: Message) {
        self.with_loop(|lp| {
            match lp {
                Some(lp) => {
                    // Need to execute all existing requests first, to ensure
                    // that our message is processed "in order"
                    lp.consume_queue();
                    lp.notify(msg);
                }
                None => {
                    match mpsc::UnboundedSender::send(&self.tx, msg) {
                        Ok(()) => {}

                        // TODO: this error should punt upwards and we should
                        //       notify the caller that the message wasn't
                        //       received. This is tokio-core#17
                        Err(e) => drop(e),
                    }
                }
            }
        })
    }

    fn with_loop<F, R>(&self, f: F) -> R
        where F: FnOnce(Option<&Core>) -> R
    {
        if CURRENT_LOOP.is_set() {
            CURRENT_LOOP.with(|lp| {
                let same = lp.inner.borrow().id == self.id;
                if same {
                    f(Some(lp))
                } else {
                    f(None)
                }
            })
        } else {
            f(None)
        }
    }

    /// Spawns a new future into the event loop this remote is associated with.
    ///
    /// This function takes a closure which is executed within the context of
    /// the I/O loop itself. The future returned by the closure will be
    /// scheduled on the event loop and run to completion.
    ///
    /// Note that while the closure, `F`, requires the `Send` bound as it might
    /// cross threads, the future `R` does not.
    pub fn spawn<F, R>(&self, f: F)
        where F: FnOnce(&Handle) -> R + Send + 'static,
              R: IntoFuture<Item=(), Error=()>,
              R::Future: 'static,
    {
        self.send(Message::Run(Box::new(|lp: &Core| {
            let f = f(&lp.handle());
            lp.inner.borrow_mut().spawn(Box::new(f.into_future()));
        })));
    }

    /// Return the ID of the represented Core
    pub fn id(&self) -> CoreId {
        CoreId(self.id)
    }

    /// Attempts to "promote" this remote to a handle, if possible.
    ///
    /// This function is intended for structures which typically work through a
    /// `Remote` but want to optimize runtime when the remote doesn't actually
    /// leave the thread of the original reactor. This will attempt to return a
    /// handle if the `Remote` is on the same thread as the event loop and the
    /// event loop is running.
    ///
    /// If this `Remote` has moved to a different thread or if the event loop is
    /// running, then `None` may be returned. If you need to guarantee access to
    /// a `Handle`, then you can call this function and fall back to using
    /// `spawn` above if it returns `None`.
    pub fn handle(&self) -> Option<Handle> {
        if CURRENT_LOOP.is_set() {
            CURRENT_LOOP.with(|lp| {
                let same = lp.inner.borrow().id == self.id;
                if same {
                    Some(lp.handle())
                } else {
                    None
                }
            })
        } else {
            None
        }
    }
}

impl<F> Executor<F> for Remote
    where F: Future<Item = (), Error = ()> + Send + 'static,
{
    fn execute(&self, future: F) -> Result<(), ExecuteError<F>> {
        self.spawn(|_| future);
        Ok(())
    }
}

impl fmt::Debug for Remote {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        f.debug_struct("Remote")
         .field("id", &self.id())
         .finish()
    }
}

impl Handle {
    /// Returns a reference to the underlying remote handle to the event loop.
    pub fn remote(&self) -> &Remote {
        &self.remote
    }

    /// Spawns a new future on the event loop this handle is associated with.
    pub fn spawn<F>(&self, f: F)
        where F: Future<Item=(), Error=()> + 'static,
    {
        let inner = match self.inner.upgrade() {
            Some(inner) => inner,
            None => return,
        };
        inner.borrow_mut().spawn(Box::new(f));
    }

    /// Spawns a closure on this event loop.
    ///
    /// This function is a convenience wrapper around the `spawn` function above
    /// for running a closure wrapped in `futures::lazy`. It will spawn the
    /// function `f` provided onto the event loop, and continue to run the
    /// future returned by `f` on the event loop as well.
    pub fn spawn_fn<F, R>(&self, f: F)
        where F: FnOnce() -> R + 'static,
              R: IntoFuture<Item=(), Error=()> + 'static,
    {
        self.spawn(future::lazy(f))
    }

    /// Return the ID of the represented Core
    pub fn id(&self) -> CoreId {
        self.remote.id()
    }
}

impl<F> Executor<F> for Handle
    where F: Future<Item = (), Error = ()> + 'static,
{
    fn execute(&self, future: F) -> Result<(), ExecuteError<F>> {
        self.spawn(future);
        Ok(())
    }
}

impl fmt::Debug for Handle {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        f.debug_struct("Handle")
         .field("id", &self.id())
         .finish()
    }
}

impl TimeoutState {
    fn block(&mut self, handle: Task) -> Option<Task> {
        match *self {
            TimeoutState::Fired => return Some(handle),
            _ => {}
        }
        *self = TimeoutState::Waiting(handle);
        None
    }

    fn fire(&mut self) -> Option<Task> {
        match mem::replace(self, TimeoutState::Fired) {
            TimeoutState::NotFired => None,
            TimeoutState::Fired => panic!("fired twice?"),
            TimeoutState::Waiting(handle) => Some(handle),
        }
    }
}

struct MySetReadiness(mio::SetReadiness);

impl Notify for MySetReadiness {
    fn notify(&self, _id: usize) {
        self.0.set_readiness(mio::Ready::readable())
              .expect("failed to set readiness");
    }
}

trait FnBox: Send + 'static {
    fn call_box(self: Box<Self>, lp: &Core);
}

impl<F: FnOnce(&Core) + Send + 'static> FnBox for F {
    fn call_box(self: Box<Self>, lp: &Core) {
        (*self)(lp)
    }
}

fn read_ready() -> mio::Ready {
    mio::Ready::readable() | platform::hup()
}

const READ: usize = 1 << 0;
const WRITE: usize = 1 << 1;

fn ready2usize(ready: mio::Ready) -> usize {
    let mut bits = 0;
    if ready.is_readable() {
        bits |= READ;
    }
    if ready.is_writable() {
        bits |= WRITE;
    }
    bits | platform::ready2usize(ready)
}

fn usize2ready(bits: usize) -> mio::Ready {
    let mut ready = mio::Ready::empty();
    if bits & READ != 0 {
        ready.insert(mio::Ready::readable());
    }
    if bits & WRITE != 0 {
        ready.insert(mio::Ready::writable());
    }
    ready | platform::usize2ready(bits)
}

#[cfg(unix)]
mod platform {
    use mio::Ready;
    use mio::unix::UnixReady;

    pub fn aio() -> Ready {
        UnixReady::aio().into()
    }

    pub fn all() -> Ready {
        hup() | aio()
    }

    pub fn hup() -> Ready {
        UnixReady::hup().into()
    }

    const HUP: usize = 1 << 2;
    const ERROR: usize = 1 << 3;
    const AIO: usize = 1 << 4;

    pub fn ready2usize(ready: Ready) -> usize {
        let ready = UnixReady::from(ready);
        let mut bits = 0;
        if ready.is_aio() {
            bits |= AIO;
        }
        if ready.is_error() {
            bits |= ERROR;
        }
        if ready.is_hup() {
            bits |= HUP;
        }
        bits
    }

    pub fn usize2ready(bits: usize) -> Ready {
        let mut ready = UnixReady::from(Ready::empty());
        if bits & AIO != 0 {
            ready.insert(UnixReady::aio());
        }
        if bits & HUP != 0 {
            ready.insert(UnixReady::hup());
        }
        if bits & ERROR != 0 {
            ready.insert(UnixReady::error());
        }
        ready.into()
    }
}

#[cfg(windows)]
mod platform {
    use mio::Ready;

    pub fn all() -> Ready {
        // No platform-specific Readinesses for Windows
        Ready::empty()
    }

    pub fn hup() -> Ready {
        Ready::empty()
    }

    pub fn ready2usize(_r: Ready) -> usize {
        0
    }

    pub fn usize2ready(_r: usize) -> Ready {
        Ready::empty()
    }
}